
2002/09/30 1Design Patterns Module 2 -- UML

Module 2
An Introduction to UML

CSCI E-247
Fall, 2002

2002/09/30 2Design Patterns Module 2 -- UML

Outline of this Module

• In this module we
– Cover basic concepts of Object Modeling
– Introduce notation from the Unified Modeling Language (UML)
– Do an example to illustrate UML
– Discuss reuse with inheritance vs reuse with composition

2002/09/30 3Design Patterns Module 2 -- UML

The Unified Modeling Language (UML)

• For many years, Rumbaugh’s Object Modeling Technique(OMT),
Booch’s O-O methodology, and Jacobsen’s Objectory methodology
were the three primary, but competing, O-O methodologies

• UML combines the notation from these three into one unified object
model

• UML has been adopted as a standard for Object-Oriented Analysis and
Design by the Object Management Group (OMG)

• The course will use a subset of the notation of UML version 1.1
throughout

• Note: UML 2.0 is available at www.omg.org

Note that UML is a notation for diagramming object models, but is not a methodology, in
that it does not prescribe how a project team or organization should proceed through OOA
and OOD.
UML documentation and other information is available at

http://www.rational.com/uml/ and at http://www.omg.org.
The OMG is a consortium of over 850 companies devoted to defining standards of object
technology, including the Common Object Request Broker Architecture (CORBA).
Visit the OMG home page at http://www.omg.org.

There are many other kinds of relationships between classes and other kinds of features that
UML defines for modeling (such as state-transition models).
We focus our attention here on the most common structural (static) relationships among
classes.

2002/09/30 4Design Patterns Module 2 -- UML

Basic O-O Concepts in UML

• On the next few slides, we will show how to describe the following O-
O concepts in the Unified Modeling Language (UML)

• Inheritance
• Associations
• Aggregation
• Composition

2002/09/30 5Design Patterns Module 2 -- UML

UML Notation for the Class Construct

• A class defines a set of attributes (which express the state of the class)
and methods (which express the behavior of the class)

ClassXYZ

methodA()
methodB()

attributeA
attributeB

Rectangle

rotate() : void
area() : double

topLeft : Point
bottomRight : Point

The diagram above shows each of the following in a separate box:
the name of the class (in bold)
the attributes
the methods

In declaring attributes, we put the attribute name first, and if we choose to specify the
attribute's type we follow the attribute name with the type, for example
topLeft : Point.
We use a similar convention for method declarations, for instance,
area() : double.
We will follow the same naming conventions for classes, data members, and methods as we
do for Java.

2002/09/30 6Design Patterns Module 2 -- UML

Public, Private, Protected Access

• UML does have a notation for specifying which data members and
methods are public, private, or protected

• In our use of UML notation, the methods are assumed to be public
methods.

• The attributes are assumed to be private, with public accessors (get/set)
are implicitly defined [if an attribute is read-only, only the get accessor
is defined]

• In the case of Rectangle on the previous slide, there are four
implicitly defined accessors, which are not shown in the diagram:
public Point getTopLeft();
public setTopLeft(Point p);
public Point getBottomRight();
public setBottomRight(Point p);

We will follow a similar convention for associations, to be defined later

2002/09/30 7Design Patterns Module 2 -- UML

Use of Stereotypes

• Often, we want to specify that a class is abstract, or that we have an
interface rather than a class

• This happens infrequently at analysis time
• The notation on a class is called a 'stereotype' in UML. It's denoted as

follows

<<interface>>
Shape

<<abstract>>
Shape

lineColor : Color

draw(): void draw(): void

On the left, Shape is an abstract class, since there is a need to define an attribute common to
all Shape objects.
On the right, Shape defines only methods, so it can be an interface.

2002/09/30 8Design Patterns Module 2 -- UML

UML Notation for Inheritance

Derived Class
attributeC
attributeD
methodC()
methodD()
methodE()

Base Class
attributeA : type
attributeB
methodA() : return type
methodB()

Implementation Class

methodC()
methodD()

attributeC
attributeD

<<interface>>
Base Interface

methodA() : void

Inheritance is sometimes referred to as ‘Is-A’.
You should use inheritance only when an instance of the derived class can be substituted
everywhere that the base class appears.
In C++, public derivation is the means of implementing inheritance relationships. By
contrast, the Java programming language allows one to declare an interface explicitly, and a
class can declare that it implements multiple interfaces, while can extend only one other
class.
Inheritance, as described here, is sometimes referred to as ‘interface inheritance’, which
means the incremental definition of an interface by including other interfaces.
When there are many classes to be shown on the same diagram, it is often useful to suppress
detail, such as the method list or attribute list, showing instead only a rectangle with the class
name.

2002/09/30 9Design Patterns Module 2 -- UML

Examples of Inheritance

Rectangle

rotate() : void
area() : double

lineColor : Color
topLeft : Point
bottomRight : Point

<<interface>>
Shape

draw() : void

Rectangle

rotate() : void
area() : double

topLeft : Point
bottomRight : Point

<<abstract>>
Shape

draw() : void

lineColor : Color

The left diagram shows class Rectangle extending (in Java-speak) class Shape. The
Shape class shown has a very limited interface. The attribute lineColor is public and
has two related public access methods: getLineColor() and setLineColor().
The derived class Rectangle supports all the methods in Shape as well as the new
accessor functions for its own state variables and the two new public methods.
The right diagram shows class Rectangle implementing (in Java-speak) interface Shape.

2002/09/30 10Design Patterns Module 2 -- UML

Associations

*

1

ClassX
attributeA
attributeB
methodA()
methodB()

ClassY
attributeC
attributeD
attributeE
methodA()

ClassZ
attributeF
attributeG
methodC()
methodD()

The asterisk (*) shown at the right-hand end of the top line above means that the association
involves zero or more instances of the attached class.
As written, an instance of ClassX is associated with zero or more instances of ClassY and
exactly 1 instance of ClassZ. When the instance of ClassX is deleted, the associated
instances might or might not be deleted as well. We say that the lifetime of the related
instances of ClassY and ClassZ are independent from that of the associated instance of
ClassX.
The * can be omitted or replaced by a specific integer or a range of integers (e.g., 10 or
1..10).

2002/09/30 11Design Patterns Module 2 -- UML

Convention for Associations

• For attributes, we expect two public accessors (get/set)
• For associations, there is a need for mechanisms to modify the

association and to retrieve values from the association. Typically there
are three public methods we will expect to be defined implicitly
void add(ClassY cy)
void delete (ClassY cy)
Iterator list ()

*

ClassX
attributeA
attributeB
methodA()
methodB()

ClassY
attributeC
attributeD
attributeE
methodA()

The add/delete methods mention could throw exceptions.
The list method returns an Iterator (perhaps a type-safe one, where currentItem()
returns an object of type ClassY)
If a class participates in multiple associations, it might be necessary to differentiate the list
method with multiple names (e.g., listClassY(), listClassZ()).

2002/09/30 12Design Patterns Module 2 -- UML

Example: Associations

*Person Project
Assigned to*

Department

*

1

Work in

• The diagram below models the associations described in the statement
"a person works in one department and a person can be assigned to
multiple projects, while projects have many persons assigned"

The association between the Person and Project classes is known as a ‘many-to-many’
association, while the association between Department and Person classes is known as a
‘1-to-many’ association.
Note that in this diagram, which emphasizes associations, we suppress detail about the
attributes and methods on the associated classes.

2002/09/30 13Design Patterns Module 2 -- UML

ClassX
attributeA
attributeB
methodA()
methodB()

ClassY
attributeC
attributeD
attributeC
methodA()

Has-A
*

Aggregation

• Aggregation is a special kind of association in which an object of a
class X contains or has objects of a class Y

The open diamond notation in the diagram above indicates that an instance of ClassX has
(or is the parent of) zero or more instances of ClassY. Aggregation is also referred to as
shared aggregration, which means that the part (an instance of ClassY in the case above)
could be shared among more than one parent instance. The open diamond does not imply that
when the instance of ClassX is deleted, all of its parts are also deleted. We will contrast
this with the UML concept of composition on the next slide.
As before, the * can be omitted or replaced by a specific integer or range of integers.

2002/09/30 14Design Patterns Module 2 -- UML

Composition

• Composition is a special kind of aggregation in which the contained
object cannot be shared among multiple containers and must be deleted
when the container is deleted

ClassX
attributeA
attributeB
methodA()
methodB()

ClassY
attributeC
attributeD
attributeC
methodA()

*

The notation in the diagram above indicates that an instance of ClassX has (or is the parent
of) zero or more instances of ClassY, with the additional constraints that
a) parts cannot be shared simultaneously by two containers
b) when the instance of ClassX is deleted, all of its parts are also deleted. In UML, this
lifecycle dependency is referred to as coincident lifetimes. However, parts can be added to
and removed from an instance of ClassX at any time, and can be moved from one
container to another.
For example, a directory in a file system is a container of files and other directories. In some
file systems, we would use UML composition to model this association between directories
and other directories, and between directories and files. This implies that if we delete a
directory, we also delete all subdirectories and files within it.
The UML use of the term “composition” differs from the use of the term in the design
patterns text, where composition is more like a general association in UML. Thus the UML
concept of association is more restrictive than that of the GoF, as described above.

2002/09/30 15Design Patterns Module 2 -- UML

Instance Diagrams

• An instance diagram shows how some instances of the classes in a
class diagram might be related

• An instance is shown as a rectangle with the instance name followed
by the class name or just an instance name. Values of the instance’s
attributes can be shown. Relationships to other instances are shown as
arrows

r1:Rectangle

lineColor = red
topLeft = {10,10}
bottomRight = {100,100}

An instance diagram can be very useful to illustrate the associations that have been defined in
one or more class diagrams. This usage supports the concept of walking through a scenario
to validate the model.

2002/09/30 16Design Patterns Module 2 -- UML

Example: A Simple Filing System

• We want to model the objects in a simple filing system
• Every object in the filing system has a name, a date modified, and set

of permissions (read, write, execute)
• Some objects, known as directory objects, are containers of any kind

of object in the filing system. Other objects, known as file objects, do
not contain other filing system objects

• Objects cannot be shared among containers

A directory object allows addition, deletion, and listing of any of its contents.
A file object has a size (in bytes) and a file type associated with it (e.g., text file, executable
file,…) as well as an open method. For a text file, the open method should launch a text
editor; for an executable file, the open method should launch the executable.

2002/09/30 17Design Patterns Module 2 -- UML

Class Diagram for the Simple Filing System

*

FileDirectory

add(Fileable)
delete(Fileable)
list()

Contains

type
size

open()

<<abstract>>
Fileable

name
permissions
dateModified
isContainer()

Note that with the interaction of the inheritance relationship and the aggregation relationship,
the model defines arbitrarily deep instance hierarchies, as shown in the instance diagram on
the next slide.
The isContainer() method allows a client of a collection of Fileable objects to test if
a given Fileable object is a container (e.g., a Directory) so that it knows whether it
can add, delete, or list any contained objects).

2002/09/30 18Design Patterns Module 2 -- UML

Class Diagram for the Simple Filing System – 2

*

FileDirectory

Contains

type
size

open()

<<abstract>>
Fileable

name
permissions
dateModified
add(Fileable)
delete(Fileable)
list()

Structurally, this allows the same nested hierarchies of Fileable objects as the previous
diagram. In this version, the “container-ish” methods (add(), delete(), and list()
)have been placed on the most generic class, i.e., Fileable, rather than on the class
Directory. This provides a uniform means of dealing with hierarchies of Fileable
objects. A consequence is that File objects must ignore these methods or throw an
exception.
This second model is actually an example of a pattern called the Composite Pattern. The
model above is simpler than that on the previous page, in that a client of the filing system
does not to continually test whether an object in the system is a File or a Directory.

2002/09/30 19Design Patterns Module 2 -- UML

vi:File

bin:Directory

/:Directory

An Instance Diagram for the File System

stuff:Directory

class:Directory

syllabus:Fileasn1.txt:File

This instance diagram shows one (of an unlimited number) of the possible sets of Fileable
objects that can be created that satisfy the class diagram on the previous page.
In this example, there is a top-level (root) directory named “/” (slash), which has two
subdirectories named bin and stuff. We are used to forming names of directories and
files by concatenating the names of the instances along the path (for instance, the full name of
the file syllabus is /stuff/class/syllabus).
This diagram is a typical instance hierarchy, which is defined by an aggregation relationship,
such as that between class Directory and instances of class Fileable, and can have an
unlimited number of possible instances. This is in contrast with the concept of an inheritance
hierarchy, which refers to the "is-a" relationships that exist between derived classes and their
base class(es). For instance, in the filing system, the inheritance hierarchy consists of the
base class Fileable and the derived classes File and Directory and is fixed. An
instance hierarchy is defined by an aggregation relationship, such as that between class
Directory and instances of class Fileable, and can have an unlimited number of
possible instances.

Object technology is touted as a mechanism for finally bringing widespread reusable
components to software development organizations.
When we talk about reusable design patterns, we are dealing at a conceptual level. In most
cases there will not be a class library that embodies the design pattern. It will be up to you
to understand the solution proposed in the design pattern and implement it within your own
context.

2002/09/30 20Design Patterns Module 2 -- UML

A Few Words on Reuse

• Object technology supports reuse through interoperable components;
for instance, reuse of third-party foundation class libraries is now
routine, and many organizations are building reusable business objects
such as Customer, Account, etc

• Design patterns enable the reuse of conceptual designs for
collaborating components; this is the thrust of the course we are just
beginning

In C++, supplying an object at run-time usually requires using a pointer to refer to the
assigned object. In Java, a reference to an object is supplied.
Clients should maintain a deliberate lack of awareness of the implementation details
behind an interface. When the implementation changes, a client can continue to use the
same interface, and polymorphic behavior also provides a binding to the correct subclass
implementation.
Composition means reusing other objects by combining them(via associations, in the
GoF sense) into collaborative sets of objects that deliver the desired functionality.
Composition enables run-time choice of composable objects, which offers more
flexibility than inheritance, which imposes compile-time restrictions.
Note that the second bullet above does not mean that you should not use inheritance, but
that you can increase the flexibility of your system through composition.

2002/09/30 21Design Patterns Module 2 -- UML

Two Principles for Reuse

• Program to an interface, not to an implementation
– In C++ and Java this means using only the methods declared as

public, restricting the use of data members to read/write access
methods, and limiting the use of protected methods and (in C++)
‘friend’ functionality

• Favor composition over inheritance
– This means to look for opportunities to supply an object at run-

time with the desired functionality rather than constraining the
choice of object to use to compile-time inheritance

2002/09/30 22Design Patterns Module 2 -- UML

Reuse Through Inheritance

• Is-A relationships define interface inheritance. A subclass provides the
same interface as the parent class

• When you reuse a class by inheriting from it, you also often gain some
implementation inheritance, in that you can “see into” the parent’s
implementation, for instance, into its public and protected methods,
which you can override

• Reuse through inheritance requires declaring the relationship at
compile-time

In the early days (a mere 10-15 years ago!) of object design, inheritance was the primary
means of providing reuse. As time has gone on, there has been a recognition that there are
other means of combining existing objects to attain reuse. For instance, many people
advocate more use of ‘composition’ of objects to obtain reuse. Note that ‘composition’ in
UML is different from the meaning in the reuse context, where composition means any
association.

2002/09/30 23Design Patterns Module 2 -- UML

Reuse Through Composition

• Composition, by contrast with inheritance, allows the binding of the
reused objects at runtime, and therefore increases the system flexibility

Note that 'composition' here is used in the general sense defined in the Gang of Four.

2002/09/30 24Design Patterns Module 2 -- UML

The Two Types of Patterns

• The GoF have introduced two terms to highlight the difference between
reuse through inheritance and reuse through composition

• “Class-based patterns” use Inheritance relationships (e.g., the Factory
Method Pattern,)

• “Object-based patterns” use Composition relationships (e.g., the Class
Factory Pattern,)

• We will find examples of both types of patterns within each of the 3
categories defined previously

The terms “class-based” and “object-based” were introduced by the GoF to further
differentiate design patterns. The class-based patterns tend to be a little less flexible than the
object-based patterns. As a designer, you have to decide how much flexibility is required and
choose the implementation accordingly.

2002/09/30 25Design Patterns Module 2 -- UML

Example: Inheritance vs. Composition

• Suppose you’re trying to define a Stack class, and want to implement
the Stack in terms of a List container class

Stack

push(Item item) : void
pop() : Item

insertAt(Item,int) : void
delete(Item) : void
remove(int) : void
itemAt(int): Item

List

The diagram above shows the Stack and List classes. The interface for the Stack class
consists of the two standard methods, push() and pop(). The input to push() is
anything of type Item. The return value from pop() is also anything of type Item. Similar
comments apply to the methods insertAt() and delete() in the class List. This limits
the utility of the Stack and List classes to one kind of object. In C++, one can use the
template facility to define Stack and List classes that allow their use on any kind of
object. In Java, which has no template facility, one can approach the problem differently, as
we'll show a little later.
The goal is to implement the Stack methods in terms of the List class methods for
insertion, deletion, and retrieval of items in the List. There are two approaches to doing
this: use inheritance or use composition.

2002/09/30 26Design Patterns Module 2 -- UML

Using Inheritance to Define the Stack Class

insertAt(Item,int) : void
delete(Item) : void
remove(int) : void
itemAt(int): Item

List

push(Item) : void
pop() : Item

Note: this approach
is not desirable, as
described below

Note: this approach
is not desirable, as
described below

Stack

There are two flaws with using inheritance to implement the Stack class.
- The Stack interface is just a ‘push()/pop()’ pair, so any other methods for
accessing the List would be inappropriate if exposed as public methods on Stack
- If later on you want to change the implementation, you have to change the
declaration of the Stack class and recompile every client that uses the Stack class.

A Stack is not a List. You do not want to use a Stack wherever a List could be used.
C++ supports “implementation inheritance” through private inheritance. Java does not
support private inheritance.
Unfortunately, the class java.util.Stack is declared to extend the class
Java.util.Vector. Hence it should be used with care, since a user of Stack has
access to the general access mechanisms of Vector.

2002/09/30 27Design Patterns Module 2 -- UML

Using Composition to Define the Stack Class

insertAt(Item,int) : void
delete(Item) : void
remove(int) : void
itemAt(int): Item

ListStack

push(Item) : void
pop() : Item

It’s easy to see how to code push() in terms of the
insertAt() method and pop() in terms of itemAt() and
remove()

The composition approach is clearly superior to the use of inheritance in this case.
- The Stack interface is not polluted with the List class's methods
- If later on you want to change the implementation, you don’t have to change the
declaration of the Stack class and recompile every client that uses the Stack class.

2002/09/30 28Design Patterns Module 2 -- UML

Implementing the Class Stack using List

public class List
{
// details of the List implementation
// are omitted
public void insertAt(Object item,

int where) {};
public void delete(Object item) {};
public void remove(int where) {};
public Object itemAt(int where) {}

// Internal storage for the list
// is private
}// end List

We start with the definition above, then cover the implementation of Stack on the next
slide. We omit the details of the List method implementation.
This specification of List is very much like the Java class java.lang.Vector.
As we will in many examples, we have not declared any exceptions; for instance,
remove(int where) would likely throw an IndexOutOfRange exception when the
parameter is negative, 0, or larger than the number of elements in the list.

2002/09/30 29Design Patterns Module 2 -- UML

Implementing the Stack Class

public class Stack {
public void push(Object item) {
items.insertAt(item, 0);

}
public Object pop() {
Object item = items.itemAt(0);
items.remove(0);
return item;

}

private List items;
}// end Stack

push() and pop() are the two methods you'd expect to see on a stack.
A more realistic version of push() would declare an exception such as StackFull, and
pop() would declare an exception, such as StackEmpty.
These implementations are straightforward. Note that we have omitted any exception
handling (for instance in the case of pop(), the stack could be empty, in which case
itemAt(0) would raise an exception. pop() could either handle the exception or raise its
own exception to its caller.
This generic Stack deals in the most general Java class, namely, java.lang.Object.
This means a user has to exercise care when trying to ensure that only objects of a certain
type can be pushed onto or popped off the stack.

2002/09/30 30Design Patterns Module 2 -- UML

Implementing Type-specific Stack Classes

public class ItemStack {

private Stack internalStack;

public ItemStack() {
internalStack = new Stack();

}
public void push(Item thingToPush){
internalStack.push(thingToPush);

}
public Item pop(){
Object value = internalStack.pop();
return (Item)value;
}

} // end ItemStack

Suppose we want to create a specific Stack to hold objects of type Item. We can use the
generic Stack and ensure that we push only objects of type Item, and when we pop the
Stack, we can check that we've really got something of type Item. This puts the burden on
the user of the generic Stack to do run-time type checking.
The alternative is shown above, where we show how to reuse the generic Stack through
composition to provide a type-safe version of Stack for objects of type Item. Note that we
would have to propagate any exceptions thrown by the methods in the generic Stack .
It is a nuisance to have a separate class for each kind of Stack we want to create.

