Exercise 1: FFT (5 points)
Compute the product of the two polynomials
\[p(x) = 5x + 2 \quad \text{and} \quad q(x) = 6x + 1 \]
using the Fast Fourier Transform. Specify all (recursive) calls of the FFT algorithm as well as the outputs and the assignments of the temporary variables used during the execution.

Exercise 2: FFT (5 points)
Let \(A \) and \(B \) be two sets of integers in the range \([0, m - 1]\) where \(m \) is a power of two. Show that the following can be computed in \(O(m \log m) \) time with a single DFT:

(i) all elements contained in the set \(A + B = \{ a + b \mid a \in A \land b \in B \} \)

(ii) for each element \(c \in A + B \) the number \(k_c = |\{(a, b) \in A \times B : a + b = c\}|. \)

Hint: Find some polynomials \(p_A, p_B \) of degree less than \(m \) that represent the sets \(A \) and \(B \).

Exercise 3: Randomized Quicksort (5 points)

a) Let \(T \) be the representation of a certain execution of Randomized Quicksort as a tree. Describe the relation between the element of a node and the elements of its left and right child. Give a short reason for your answer.

b) Does every permutation \(\pi \) that can arise for an execution of Randomized Quicksort on \(n \) elements \((n > 2)\) occur with probability \(\frac{1}{n!} \)? Give reasons for your answer.

Hint: For a better understanding of the construction of a permutation for a tree \(T \) have a closer look at the example in the lecture.

Exercise 4: RSA (5 points)
For an RSA encryption choose \(p = 31 \) and \(q = 17 \). Moreover, let \(e = 131 \).

a) Compute the number \(d \) and specify the outputs of the algorithm extended-Euclid. Furthermore, give the public and the private key.

b) Generate a digital signature for the message \(M = 72 \). What does a recipient of the message have to check in order to verify the signature?

Hint: For generating the signature, use the fast exponentiation algorithm power but omit the check for square roots of 1 (modulo \(n \)).