
Junior-Prof. Dr. Robert Elsässer, Marco Muñiz, Phillip Heidegger WS 2009/2010

Algorithms Theory, Solution for Assignment 2
http://lak.informatik.uni-freiburg.de/lak_teaching/ws09_10/algo0910.php

Exercise 2.1 - Fast Fourier Transform

The two polynomials have degree less than 2, hence the polynomial pq has degree less than 4. We
represent p and q by four entries in an array and compute DFT4 using FFT.

p(x) = 3x+ 1 pa = [1, 3, 0, 0]
q(x) = 7x+ 4 qa = [4, 7, 0, 0]

We split pa and qa into two parts:

p1
a = [1, 0] p2

a = [3, 0]

q1a = [4, 0] q2a = [7, 0]

For 1 ≤ k ≤ 3, it holds that:

DFTk(pa, 4) = (DFT (p1
a, 2), DFT (p1

a, 2))k + ωk
4 (DFT (p2

a, 2), DFT (p2
a, 2))k (1)

Hint: If v1 is a vector with n elements and v2 is a vector with m elements, then (v1, v2) is a
vector with n+m elements, Then:

(v1, v2)k :=

{
vk if 1 ≤ k ≤ n
vj if n < k ≤ n+m and j = k − n

Example The following example demonstrates the notation given above:

((1, 2, 3), (4, 5)) = (1, 2, 3, 4, 5)

Hence, (DFT (p1
a, 2), DFT (p1

a, 2)) is a vector with 4 entries, and the first two entries are the
same as the second one.

We state

ω0
4 = 1 ω1

4 = i

ω2
4 = −1 ω3

4 = −i

Hence we can write DFT (pa, 4) = FFT (pa, 4) as:

FFT (pa, 4) = (FFT ([1, 0], 2)1 + 1 · FFT ([3, 0], 2)1,
FFT ([1, 0], 2)2 + i · FFT ([3, 0], 2)2,
FFT ([1, 0], 2)1 + (−1) · FFT ([3, 0], 2)1,
FFT ([1, 0], 2)2 + (−i) · FFT ([3, 0], 2)2)

Now we have to compute FFT ([1, 0], 2) and FFT ([3, 0], 2).

1. First we compute FFT ([1, 0], 2). It is defined as:

FFT ([1, 0], 2) = ((FFT ([1], 1), FFT ([1], 1))1 + 1 · (FFT ([0], 1), FFT ([0], 1))1,
(FFT ([1], 1), FFT ([1], 1))2 + (−1) · (FFT ([0], 1), FFT ([0], 1))2)

= (1 + 0, 1− 0) = (1, 1)

1

http://lak.informatik.uni-freiburg.de/lak_teaching/ws09_10/algo0910.php

2. Now, FFT ([3, 0], 2) yields:
FFT ([3, 0], 2) = (3, 3)

We optain

FFT (pa, 4) = (1 + 3, 1 + 3i, 1− 3, 1− 3i) = (4, 1 + 3i,−2, 1− 3i) (2)

For qa it holds that:

FFT (qa, 4) = (FFT ([4, 0], 2)1 + 1 · FFT ([7, 0], 2)1,
FFT ([4, 0], 2)2 + i · FFT ([7, 0], 2)2,
FFT ([4, 0], 2)1 + (−1) · FFT ([7, 0], 2)1,
FFT ([4, 0], 2)2 + (−i) · FFT ([7, 0], 2)2)

1. First we compute FFT ([4, 0], 2).

FFT ([4, 0], 2) = (4, 4)

2. Now, FFT ([7, 0], 2) yields:
FFT ([7, 0], 2) = (7, 7)

Then,
FFT (qa, 4) = (4 + 7, 4 + 7i, 4− 7, 4− 7i) = (11, 4 + 7i,−3, 4− 7i) (3)

Hence we get the result for p · q by multiplying (2) and (3) :

FFT (p · q, 4) = (4 · 11, (1 + 3i) · (4 + 7i),−2 · (−3), (1− 3i) · (4− 7i))
= (44,−17 + 19i, 6,−17− 19i)

This yields

pq(ω0
4) = pq(1) = 44

pq(ω1
4) = pq(i) = −17 + 19i

pq(ω2
4) = pq(−1) = 6

pq(ω3
4) = pq(−i) = −17− 19i

Hence we have a point-value representation of pq.

Interpolation
To compute the coefficients we set r(x) := [44,−17 + 19i, 6,−17− 19i]. We compute FFT(r,4) by
first splitting r into two parts: r1 = [44, 6] and r2 = [−17 + 19i,−17− 19i].

FFT (r, 4) = (FFT ([44, 6], 2)1 + FFT ([−17 + 19i,−17− 19i], 2)1,
FFT ([44, 6], 2)2 + iFFT ([−17 + 19i,−17− 19i], 2)2,
FFT ([44, 6], 2)1 − FFT ([−17 + 19i,−17− 19i], 2)1,
FFT ([44, 6], 2)2 − iFFT ([−17 + 19i,−17− 19i], 2)2)

We compute FFT([44,6],2) and FFT([-17 + 19i, -17 - 19i],2):

FFT ([44, 6], 2) = (44 + 6, 44− 6) = (50, 38)
FFT ([−17 + 19i,−17− 19i], 2) = (−34, 38i)

Hence:

FFT (r, 4) = (50− 34, 38 + 38i2, 50 + 34, 38− 38i2) = (16, 0, 84, 76)

2

From this we obtain the coefficients

a0 =
1
4
· 16 = 4 a1 =

1
4
· 76 = 19

a2 =
1
4
· 84 = 21 a3 =

1
4
· 0 = 0

and hence

pq = 0x3 + 21x2 + 19x+ 4

Exercise 2.2 - FFT

1. Define

pA = am−1x
m−1 + · · · a1x+ a0

pB = bm−1x
m−1 + · · · b1x+ b0

for 0 ≤ j ≤ m− 1 where

aj =

{
1 if j ∈ A
0 if j /∈ A

bj =

{
1 if j ∈ B
0 if j /∈ B

The polynomial pC = pA · pB = k2m−2x
2m−2 + · · · k1x + k0 represents the set C = A + B.

For 0 ≤ j ≤ 2m− 1 it holds that
j ∈ C ⇔ kj > 0

Since pc can be computed by FFT in time O(m logm), the statement holds.

2. The numbers kj are the solution for the second question. Please notice that it is important
to choose aj = 1 if j ∈ A and bj = 1 if j ∈ B.

3. In this part we need to count for all x all pairs (a, b) ∈ A×B, such that there exists a c ∈ N
with x = c · (a+ b). First assume we have a fixed x.

Assume for example x = 6. Computing d6 can by done by summing up k1, k2, k3 and k6.
For x = 8 we sum up k1, k2, k4, k8.

More generally, for each x ∈ {1, . . . , 2m− 2}:

dx =
2m−2∑
i=1,i|x

ki

We can write this into a table:

d1 = k1

d2 = k1 +k2

d3 = k1 +k3

d4 = k1 +k2 +k4

d5 = k1 +k5

d6 = k1 +k2 +k3 +k6

It’s easy to see that k1 is part of each sum, while k2 is part of d2, d4, d6, . . . , d2m−2. In
general, for each i ∈ {1, . . . , 2m− 2} the value ki is part of di, d2i, d3i, . . . , dki, where

k · i ≤ 2m− 2 < r(k + 1) · i

Our algorithm takes kj as input. It computes for each x ∈ {1, . . . , 2m− 2} the number dx.

3

INPUT: k []
d [] = new Array [1 . . 2m−2] (0) ;
for each i in [1 . . 2m−2] do

for (x = i ; x+ = i ; x < 2m− 2)
d [x] = d [x] + k [i]

OUTPUT: d []

For n = 2m− 2, the runtime of the algorithm T (m) is bounded by:

T (m) ≤
n∑

i=1

(∑n
x=i 1
i

)

=
n∑

i=1

(
n− i
i

)

≤
n∑

i=1

n

i

= n

(
1 +

n∑
i=2

1
i

)
≤ n · (1 + log n) ∈ O(n log n)

Hence, the runtime is in O(m logm).

Exercise 2.3 - Randomized Quicksort

1. T (n) = Θ(n2) arises when the worst-case partitioning occurs (i.d. partitioning yields two
sub-problems, with number of elements n− 1 and 0 respectively).

Possible permutations π of n and probabilities for pl and pr are:

• π = n1, n2, . . . , nm and pl = 0, pr = 1.

• Symmetrically we have: π = nm, nm−1, . . . , n1 and pl = 1, pr = 0.

• π = n1, n2, . . . , nm and pl = 0.5, pr = 0.5. One possible execution of Randomized
Quicksort could lead to the following partitions:

left right
∅ n2, n3, . . . , nm pivot = l = n1

n2, n3 . . . , nm−1 ∅ pivot = r = nm

∅ n3, . . . , nm−1 pivot = l = n2

...

2. We prove that T (n) ∈ O(n log n).

We choose a constant c1, such that ∀i ∈ {1, . . . , n− 1}

T (i) ≤ c1 · i log i .

and we prove for large n that T (n) ≤ c1n log n.

4

The definition of Θ(n) and T (n) states that for some c ∈ N:

T (n) ≤ 2
n

n−1∑
k=1

T (k) + cn

≤ 2
n

n−1∑
k=1

c1k log k + cn

=
2c1
n

n/2∑
k=1

k log k +
n−1∑

k=n/2+1

k log k

+ cn

Since log is a monotone increasing function

=
2c1
n

n/2∑
k=1

k log
n

2
+

n−1∑
k=n/2+1

k log n

+ cn

We use log n/2 = log n− log 2 and log 2 ≥ 1

≤ 2c1
n

(log n− 1)
n/2∑
k=1

k + log n
n−1∑

k=n/2+1

k

+ cn

=
2c1
n

log n
n−1∑
k=1

k −
n/2∑
k=1

k

+ cn

=
2c1
n

(
log n

(n− 1)(n− 2)
2

− (n/2− 1)(n/2− 2)
2

)
+ cn

=
c1
n

(
log n(n− 1)(n− 2)− 1

4
(n− 2)(n− 4)

)
+ cn

≤ c1n log n− c1
4n

(n2 − 6n+ 8) + cn

= c1n log n− c1n

4
+

3
2
c1 −

2c1
n

+ cn

≤ c1n log n− nc1
4

+
3
2
c1 + cn

We choose c1 = 4
(
c+ 3

2

)
≤ c1n log n− cn+ cn− 3

2
n+

3
2
c1

For large n it holds n > c1, which yields 3
2c1 ≤

3
2n.

≤ c1n log n

Exercise 2.4 - RSA

1. Given, p = 19, q = 29 and e = 5. Compute n = pq = 551. Use the extended−Euclid
algorithm with a = (p − 1)(q − 1) = 504 and b = e = 5 to compute d as the multiplicative
inverse of e modulo (p− 1)(q − 1).

input output
(504, 5) (1,−1, 1−

⌊
504
5

⌋
· −1) = (1,−1, 101)

(5, 4) (1, 1, 0−
⌊

5
4

⌋
· 1) = (1, 1,−1)

(4, 1) (1, 0, 1−
⌊

4
1

⌋
· 0) = (1, 0, 1)

(1, 0) (1, 1, 0)

5

The extended−Euclid algorithm returns the modular multiplicative inverses such that

gcd(a, b) = ax+ by
1 = 504 · (−1) + 5 · (101)

Since d ∗ e mod 504 = 1, we have d = y = 101.
Public key P = (e, n) = (5, 551), secret key S = (d, n) = (101, 551).

2. P (M) = P (22) = 225 mod 551 = 129

6

