Junior-Prof. Dr. Robert Elsésser, Marco Muniz, Phillip Heidegger WS 2009/2010

Algorithms Theory, Solution for Assignment 5
http://lak.informatik.uni-freiburg.de/lak_teaching/ws09_10/algo0910.php

Exercise 5.1 - Fibonacci Heaps

e Inserts
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e decreaseKey(40, 30)

o delete(36)
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Exercise 5.2 - Fibonacci Heaps
Suppose that the nodes have key values in Ng.

insert(n);
if n> 1 then begin
insert(n—1);
insert(n—2);
deletemin ();
for i = 3 to n do begin
insert(n—i);
insert(n—(i —1));
insert(n + 1);
deletemin ();
decreasekey(n+1,0);
deletemin ()
end;
end;

i

1. If n =1, only one node with key 1 is inserted and we have a chain of n = 1 nodes. @

2. Consider the case n = 2. Initially, three nodes with keys 2,1 and 0 are inserted as singletons.
The following deletemin operation deletes the node 0 and, during the consolidation step, links
node 2 and node 1. The result is a chain of two nodes 2 and 1, rooted at 1:

3. Consider the case n > 2. When executing the for loop for ¢ = 3, nodes n —3,n—2 and n+1
are inserted as singletons.
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The subsequent deletemin operation deletes node n — 3. The new minimum is n — 2 and in
the following consolidation step node n + 1 is linked to node n — 2.

This yields a tree of rank 1, and hence it has to be united with the existing chain rooted at
n—1. Since n — 2 is the current minimum, the existing chain is linked to the new root n — 2.
This root has now two children: n + 1 and n — 1.



The operation decreasekey(n+1,0) and deletemin now cause node n + 1 to be deleted. This
does not have any further effects on the rest of the tree. Thus, the resulting tree is again a
chain consisting of the consecutive nodes n — 2,n — 1, n.

The next execution of the loop will cause the existing chain to be linked to the new root
n — 3. Continuing up to i = n finally yields a chain from 1 to n.

Exercise 5.3 - Disjoint-set forests

e We need to find a sequence m of operations on n elements that take Q(m lg n) time. First

perform n MakeSet operations. Then we have the following singleton sets: {z1}, {z2}, ..., {zn}
Now perform the n — 1 Union operations bellow, to create a single set whose tree has depth
lgn

Union(z1,x2) n/2 of these op.

Union(xs,x4)
Union(zs, xe)

Union(zp—1, Tn)

Union(za,x4) n/4 of these op.
(
(

Union(zg, s)
Union(z1g, 212)

Union(xp—2, )

Union(zy,xs) n/8 of these op.
(
(

Union(z12,T16)
Union(xag, T24)

Union(Tp—_4,Ty)

Union(x, /2, 2,) 1 of these op.

Finally, perform m — 2n 4+ 1 findSet operations on the deepest element on the tree. Each
of these operations take (lgn) time. Letting m > 3n we have more than % findSet
operations. Therefore, the total cost is Q(mlgn).

e We use a stack S.



function find—set(x) begin

S.init()

top = X

while top # top.parent do
S.push(top)
top = top.parent

end

while = (S.isEmpty) do
tmp = S.pop()
tmp.parent = top

end

return top

Exercise 5.4 - Ackerman Function
5.4.1 - Definition of Ackerman Function

The lecture introduces a modified version of the Ackerman Function which is defined as:

A(0,j) =j+1
Ak, j) = AU (k- 1,5) for k > 1
where ACTV(k, 5) := A(k, AD(k, j)) fori € N

5.4.2 - Prove

We prove monotony of the Ackerman Function in both of its components. We prove

A(k,j+1) > A(k, j) (M:j)
Ak +1,5) > A(k, ) (M:K)
for all k,j € N.
5.4.2.1 - Lemmal
It holds
Al j)=2j+1 (1)

Prove We prove A®(0, ) E j + 4, which implies , since A(1,7) = AUTD(0,5). We continue
by induction over i:

Induction Start: : =0
A©0,5) = A(0,5) =j +0=j +i

Induction Step: i — 1 — i. Assume A1 (0,5) =5+ (i — 1)

AD(0,5) = A0, A"1(0,5))
= AY(0,5) +1
=j4+i-1+1
— ] _|-@'

lknown from the lecture



5.4.2.2 - Induction over k

Induction Start: & = 0. We have to show that (M:j)) and (M:k|) for all j. It holds that A(0, j +
H=j+1+1>5+1=A(0,7). DuetoWehaveA(l,j)=2j—|—lZj—i—IZA(O,j).

Induction Step: k&' — k+1 for all &’ < k. We assume (M:j) and (M:k) holds for &' and for all j:

A(K',j+1) = A(K', 5) (M)
A(K +1,5) = A(K', j) (M:K)
We have to prove:
!
Ak +1,j+1) > A(k + 1, j) (2)
!
Ak +2,7) > Ak + 1,7) 3)

We start proving :

Alk+1,j41) = AVT2(k, j +1)
= A(k, AUV (k,j + 1))

Since the first parameter is k, we can apply (M:j’) (which reduces j+1 by one):
> Ak, AV (k, )
Now we use (M:k’|) k& times to reduce k to 0:

> A0, AUV (K, 5))
= AU (k) +1
> AUTD (K, j)

=A(k+1,7)
Next we prove (3)).
Ak +2,7) = ATV (k 41, j)
> AU (k, 5) apply (MEK) j + 1 times
=Ak+1,75)
Hence and (3) are shown. O



