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Exercise 5.1 - Fibonacci Heaps

• Inserts
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• deleteMin()
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• decreaseKey(40, 30)
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• deleteMin()
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Exercise 5.2 - Fibonacci Heaps

Suppose that the nodes have key values in N0.

i n s e r t ( n ) ;
i f n > 1 then begin

i n s e r t (n−1);
i n s e r t (n−2);
d e l e t em in ( ) ;
f o r i = 3 to n do begin

i n s e r t (n− i ) ;
i n s e r t (n−( i −1)) ;
i n s e r t ( n + 1 ) ;
d e l e t em in ( ) ;
d e c r e a s e k e y ( n+1 ,0) ;
d e l e t em in ( ) ;

end ;
end ;

1. If n = 1, only one node with key 1 is inserted and we have a chain of n = 1 nodes. 1

2. Consider the case n = 2. Initially, three nodes with keys 2, 1 and 0 are inserted as singletons.
The following deletemin operation deletes the node 0 and, during the consolidation step, links
node 2 and node 1. The result is a chain of two nodes 2 and 1, rooted at 1:

1

2

3. Consider the case n > 2. When executing the for loop for i = 3, nodes n− 3, n− 2 and n + 1
are inserted as singletons.

n-1

n

n-3 n-2 n+1

The subsequent deletemin operation deletes node n− 3. The new minimum is n− 2 and in
the following consolidation step node n + 1 is linked to node n− 2.

n-1

n

n-2

n+1

This yields a tree of rank 1, and hence it has to be united with the existing chain rooted at
n−1. Since n−2 is the current minimum, the existing chain is linked to the new root n−2.
This root has now two children: n + 1 and n− 1.
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n-2

n+1 n-1

n

The operation decreasekey(n+1,0) and deletemin now cause node n + 1 to be deleted. This
does not have any further effects on the rest of the tree. Thus, the resulting tree is again a
chain consisting of the consecutive nodes n− 2, n− 1, n.

n-2

n-1

n

The next execution of the loop will cause the existing chain to be linked to the new root
n− 3. Continuing up to i = n finally yields a chain from 1 to n.

Exercise 5.3 - Disjoint-set forests

• We need to find a sequence m of operations on n elements that take Ω(m lg n) time. First
perform n MakeSet operations. Then we have the following singleton sets: {x1}, {x2}, . . . , {xn}.
Now perform the n− 1 Union operations bellow, to create a single set whose tree has depth
lg n

Union(x1, x2) n/2 of these op.
Union(x3, x4)
Union(x5, x6)
...
Union(xn−1, xn)
Union(x2, x4) n/4 of these op.
Union(x6, x8)
Union(x10, x12)
...
Union(xn−2, xn)
Union(x4, x8) n/8 of these op.
Union(x12, x16)
Union(x20, x24)
...
Union(xn−4, xn)
...
Union(xn/2, xn) 1 of these op.

Finally, perform m − 2n + 1 findSet operations on the deepest element on the tree. Each
of these operations take Ω(lg n) time. Letting m ≥ 3n we have more than m

3 findSet
operations. Therefore, the total cost is Ω(m lg n).

• We use a stack S.
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funct ion f i n d−s e t ( x ) begin
S . i n i t ( )
top = x
whi le top 6= top . pa r en t do

S . push ( top )
top = top . pa r en t

end
whi le ¬ (S . i sEmpty ) do

tmp = S . pop ( )
tmp . pa r en t = top

end
return top

Exercise 5.4 - Ackerman Function

5.4.1 - Definition of Ackerman Function

The lecture introduces a modified version of the Ackerman Function which is defined as:

A(0, j) = j + 1

A(k, j) = A(j+1)(k − 1, j) for k ≥ 1

where A(i+1)(k, j) := A(k,A(i)(k, j)) for i ∈ N

5.4.2 - Prove

We prove monotony of the Ackerman Function in both of its components. We prove

A(k, j + 1) ≥ A(k, j) (M:j)
A(k + 1, j) ≥ A(k, j) (M:k)

for all k, j ∈ N.

5.4.2.1 - Lemma1

It holds
A(1, j) = 2j + 1 (1)

Prove We prove A(i)(0, j) != j + i, which implies (1), since A(1, j) = A(j+1)(0, j). We continue
by induction over i:

Induction Start: i = 0

A(0)(0, j) = A(0, j) = j + 0 = j + i

Induction Step: i− 1→ i. Assume A(i−1)(0, j) = j + (i− 1)

A(i)(0, j) = A(0, A(i−1)(0, j))

= A(i−1)(0, j) + 1
= j + i− 1 + 1
= j + i

1known from the lecture
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5.4.2.2 - Induction over k

Induction Start: k = 0. We have to show that (M:j) and (M:k) for all j. It holds that A(0, j +
1) = j + 1 + 1 ≥ j + 1 = A(0, j). Due to (1) we have A(1, j) = 2j + 1 ≥ j + 1 = A(0, j).

Induction Step: k′ → k + 1 for all k′ ≤ k. We assume (M:j) and (M:k) holds for k′ and for all j:

A(k′, j + 1) ≥ A(k′, j) (M:j’)
A(k′ + 1, j) ≥ A(k′, j) (M:k’)

We have to prove:

A(k + 1, j + 1)
!
≥ A(k + 1, j) (2)

A(k + 2, j)
!
≥ A(k + 1, j) (3)

We start proving (2):

A(k + 1, j + 1) = A(j+2)(k, j + 1)

= A(k, A(j+1)(k, j + 1))

Since the first parameter is k, we can apply (M:j’) (which reduces j+1 by one):

≥ A(k, A(j+1)(k, j))

Now we use (M:k’) k times to reduce k to 0:

≥ A(0, A(j+1)(k, j))

= A(j+1)(k, j) + 1

≥ A(j+1)(k, j)
= A(k + 1, j)

Next we prove (3).

A(k + 2, j) = A(j+1)(k + 1, j)

≥ A(j+1)(k, j) apply (M:k’) j + 1 times
= A(k + 1, j)

Hence (2) and (3) are shown.
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