Algorithm Theory

Exercise 1 (Union-find) [Points: 5]
Consider the union-find data structure with bottom-up trees introduced in the lecture (the root of the first two trees becomes the root) and with path compression (all nodes on a find-set-path become children of the root). For any \(n \), state a sequence of \(n \) find-set operations and \(\mathcal{O}(n) \) union operations starting on a sufficiently large universe that each find-set operation has running time \(\Omega(\log n) \).

Exercise 2 (Union-find) [Points: 5]
Use the union-find data structure with bottom-up trees with the weighted union and path compression optimization.

(a) Write an operation sequence of make-set, union, and find-set which can produce the following data structure

(b) We are given a graph \(G = (V, E) \) and a graph coloring \(c : V \to C \) where \(C \) is a set of colors.

- A node set \(M \) is monochrome connected if each pair of nodes in \(M \) is connected by a path where all nodes have the same color.
- A monochrome connected set \(M \) is maximal if there exists no monochrome connected set \(M' \) with \(M \subset M' \).

Create an algorithm based on a union-find data structure which computes the maximal monochrome connected sets of a graph \(G = (V, E) \).

(c) Give a preferably small upper bound for the asymptotic running time of your algorithm. Justify your answer.
Algorithm 1 Maximum monochrome connected sets

Input: graph \(G = (V, E) \), graph coloring \(c : V \rightarrow C \)

Output: union-find data structure where \(\text{find-set}(u) = \text{find-set}(v) \) iff \(u \) and \(v \) are in the same maximal monochrome connected set

Exercise 3 (Greedy algorithm) [Points: 7]

We are given \(n \) jobs which can be executed on a given single machine. Each job \(j \) has weight \(w_j \) and execution time \(p_j \). The jobs are processed in some sequence \(S = (s[1], s[2], \ldots, s[n]) \) where \(s[i] \) denotes the job executed at \(i \)-th position. Suppose that job \(j \) is in position \(k \), i.e., \(j = s[k] \), then its completion time is

\[
c_j = \sum_{i=1}^{k} p_{s[i]}
\]

Our objective function is to minimize \(\sum_j w_j \cdot c_j \) over all possible sequences.

(a) Assume we have equal weights \(w_j = 1 \) and for \(n = 4 \) the execution times are \(p = (5, 7, 8, 9) \). Calculate the objective function for the sequences \(S_1 = (1, 2, 3, 4) \), \(S_2 = (1, 4, 2, 3) \), \(S_3 = (4, 2, 3, 1) \), and \(S_4 = (4, 3, 2, 1) \).

(b) Proof that it is an optimal solution to sort the \(n \) jobs in increasing order for the special case \(w_j = 1 \).

(c) Prove that it is in general optimal to sort the jobs according to increasing \(p_j/w_j \) ratio.

Exercise 4 (Greedy algorithm) [Points: 3]

Give a greedy algorithm which solves the activity selection problem optimally and sorts the \(n \) activities \(a_i = [s_i, f_i) \), \(i = 1, \ldots, n \) such that

\[
s_1 \leq s_2 \leq \ldots \leq s_n.
\]