Algorithm Theory

08 — Fibonacci Heaps

Dr. Alexander Souza

Winter term 11/12

Priority queues: operations 0;

Priority queue Q
Operations:

Q.initialize(): initializes an empty queue Q
Q.IsEmpty(): returns true iff Q is empty

Q.insert(e): inserts element e into Q and returns a pointer to the node
containing e

Q.deletemin(): returns the element of Q with minimum key and deletes it
Q.min(): returns the element of Q with minimum key
Q.decreasekey(v,k): decreases the value of v's key to the new value k

Winter term 11/12 2

Priority queues: operations 0||r

Additional operations:

Q.delete(v) : deletes node v and its element from Q
(without searching for v)

Q.meld(Q"): unites Q and Q" (concatenable queue)

Q.search(k) : searches for the element with key k in Q
(searchable queue)

And many more, e.g. predecessor, successor, max, deletemax

Winter term 11/12 3

Priority gueues: implementations

3

List Heap Bin.— Q. | Fib.-Hp.
insert O(1) O(logn) | O(log n) O(1)
min O(n) O(1) O(log n) O(1)
Ejneilnete- o(n) O(logn) | O(log n) | O(log n)*
meld O(n) or
(m<n) O(1) oM log) O(log n) O(1)
decr.-key O(1) O(logn) | O(log n) O(1)*

*= amortized cost
Q.delete(e) = Q.decreasekey(e, -«) + Q.deletemin()

Winter term 11/12

"

Fibonacci heaps 0;

,Lazy-meld“ version of binomial queues:
The melding of trees having the same order is delayed until the next
deletemin operation.

Definition
A Fibonacci heap Q is a collection heap-ordered trees.

Variables
Q.min: root of the tree containing the minimum key

Q.rootlist: circular, doubly linked, unordered list containing the roots
of all trees

Q.size: number of nodes currently in Q

Winter term 11/12 5

Trees In Fibonacci heaps ﬁ

Let B be a heap-ordered tree in Q.rootlist:

B.childlist: circular, doubly linked and unordered list of the children of B

arent
Structure of a node P
—1 = = —
< key |degree| <
child mark
/
/

Advantages of circular, doubly linked lists:

1. Deleting an element takes constant time.
2. Concatenating two lists takes constant time.

Winter term 11/12 6

Implementation of Fibonacci heaps: Example

- l?;r 24
() :
\30/ N
min
|
_ "x] T‘H\L " P
(_@ * x_?,.f 3 "}T’%" \24
C o T8 a0
C —) .M

Winter term 11/12

.

"

Operations on Fibonacci heaps 0;

Q.initialize(): Q.rootlist = Q.min = null

Q.meld(Q):
1. concatenate Q.rootlist and Q".rootlist
2. update Q.min

Q.insert(e):
1. generate a new node with elemente 2> Q°

2. Q.meld(Q")

Q.min():
return Q.min.key
Gt Yone opretion Sla ook fue

Winter term 11/12 8

Fibonacci heaps: ‘deletemin’ 0||r

Q.deletemin()
[*Delete the node with minimum key from Q and return its element.*/

1 m=Q.min()

2 ifQ.size()>0

3 then remove Q.min() from Q.rootlist

4 add Q.min.childlist to Q.rootlist
5 Q.consolidate()

[* Repeatedly meld nodes in the root list having the same _
degree. Then determine the element with minimum key. */

6 returnm

Winter term 11/12 9

"

Fibonacci heaps: maximum degree of a node

rank(v) = degree of node vin Q
rank(Q) = maximum degree of any node in Q
Assumption:

rank(Q) < 2 log n,

If Q.size =n.

Winter term 11/12 10

Fibonaccl heaps: operation ‘link’ 0;

rank(B) = degree of the root of B
Heap-ordered trees B,B” with rank(B) = rank(B")

B/ link \ N

/ \ 1. rank(B) = rank(B) + 1

2. B .mark = false

Winter term 11/12 11

Consolidation of the root list 0;

g1 23450867

HENENE ..

g1 23450867

NN

Winter term 11/12 12

Consolidation of the root list

Winter term 11/12

D 1L23450486 7
|l||||l|||

D 123450687

"

13

Fibonacci heaps: ‘deletemin’ 0||r

Find roots having the same rank:

_Array A:

0O 1 2logn

Q.consolidate()

1 A = array of length 2 log n pointing to Fibonacci heap nodes
2 fori=0to 2log ndo Ali] =null
3 while Q.rootlist # & do

4 B = Q.delete-first()

5 while A[rank(B)] is not null do

6 B = A[rank(B)]; A[rank(B)] = null; B =Ilink(B,B")

7 end while

8 Alrank(B)] =B

9 end while Ohede Hl oty efffs eorebidladion,

10 determine Q.min Takas O Logw) bome Bessune oy fione e

Winter term 11/12 Ak ek A /@g n Toots. 14

Fibonacci heap: Example 0||r

Winter term 11/12 15

Fibonacci heap: Example 0||r

Winter term 11/12 16

Fibonacci heaps: ‘decreasekey’ 0;
.

Q.decreasekey(v,k)

Wkﬂj’\f’\/{w

1 if k>v.keythen return

2 Vv.key =Kk ([)
3 update Q.min

4 if v e Q.rootlist or k >v.parent.key then return B

5 do /* cascading cuts */ v peeck

6 parent = v.parent

7 Q.cut(v)

8 vV = parent

9 while v.mark and vg Q.rootlist

10 if v g Q.rootlist then v.mark = true

Winter term 11/12 17

Fibonacci heaps: ‘cut’ 0||r

Q.cut(v)

1 if v ¢ Q.rootlist
2 then /[* cut the link between v and its parent */

3 rank (v.parent) = rank (v.parent) — 1
4 remove v from v.parent.childlistgﬂ
5 v.parent = null
6 add v to Q.rootlist
-

Winter term 11/12 18

Fibonacci heaps: marks

/

History of a node: \8
® vis being linked to a node — v.mark = false
l 6r « cAucld

@ a child of v is cut —— Vv.mark = true X%

l

a second child of v Is cut —— cutv

The boolean value mark indicates whether node v has
lost a child since the last time v was made the child of
another node.

I

Winter term 11/12 19

Rank of the children of a node 0||r

Lemma

Let v be a node in a Fibonacci-Heap Q. Let u,,...,u, denote the children
of v in the order in which they were linked to v. Then:

v
rank(u;) =i - 2.

Proof: @ @ @
U

At the time when u, was linked to v: ok (V) = yamk ()
Y
L-A

children of v (rank(v)): >i-1
children of u; (rank(u)): >i-1
children u; may have lost: 1 yask (w;) 72-2,

f

1‘%& (u;) 7 1-1

Winter term 11/12 20

0

Maximum rank of a node L]
R ; k- 18 F(/{/“G‘\MA-CUL sl res F—Iz{»z 7/ qS
To=0°, Fa=n ‘szra-/l*'_‘[l—z T:Q+ :AJ'\S}@-:

Theorem ¢

Let v be a node in a Fibonacci heap Q, and let rank(v) =k . Then v is
the root of a subtree that has at least F.., hodes.

The number of descendants of a node grows exponentially in the
number of children. -

Implication:
The maximum rank k of any node v in a Fibonacci heap Q with n nodes

satisfies: d} ’

ﬁojz'«
k ¢ 20]4,’“: :4‘14‘&,“1 éz'fozu\
2y, ¢

Winter term 11/12 21

Maximum rank of a node

Proof
@: minimum possible size of a subtree whose root has rank k

Sp=1 O

S, =2 O/@

There Is:

S, 22+3S fork>2

Fibonacci numbers:
k
Feo =14 Z F (2)
i=0

=1+F+F+...+F
(1) + (2) + induction = S, >F,,,

Winter term 11/12 22

Analysis of Fibonacci heaps 0;

Potential method to analyze Fibonacci heap operations.
Potential @, of Fibonacci heap Q:
Dy =g+ 2mg

where
o = number of nodes in Q.rootlist
my= number of all marked nodes in Q,
that are not in the root list.

Winter term 11/12 23

Amortized analysis 0||r

Amortized cost a, of the i-th operation:

a=t+ &-a8,
=t + (i) + 2(mj—m;y)

Winter term 11/12 24

Analysis of ‘insert’ nr

Insert
t=1
—r,=1

m-m_ ;=0

a=1+1+0=0(1)

Winter term 11/12 25

Analysis of ‘deletemin’ 0||r

deletemin:

t=r,+2logn
n—r,< 2logn-r,

m-m_ ;<0

a<r,+2logn+2logn-r,+0

= O(log n)

Winter term 11/12 26

Analysis of ‘decreasekey’ 0||r

decreasekey:
t =c+2
n—-r,=c+1

m-m_,;<-c+1

as<c+2+c+1+2(-c+1l)
= 0(1)

Winter term 11/12 27

Priority queues: comparison

List Heap Bin.— Q. | Fib.-Hp.
insert O(1) O(logn) | O(log n) O(1)
min O(n) O(1) O(log n) O(1)
(rjneilnete— O(n) O(logn) | O(log n) | O(log n)*
meld O(n) or
(m<n) O(1) oM log) O(log n) O(1)
decr.-key O(1) O(logn) | O(log n) O(1)*

* — amortized cost

Winter term 11/12

"

28

