
Universität Freiburg Georges-Köhler Allee, Geb. 51
Institut für Informatik D-79110 Freiburg
Prof. Dr. P. Fischer/Prof. Dr. F. Kuhn peter.�scher@informatik.uni-freiburg.de

Exercises

Distributed Systemes: Part 2
Summer Term 2015

14.7.2015
Solution Proposal

5. Exercise sheet: Paxos and Concurrency Control

Exercise 1

You are running a set of three numbered processes pi, i ∈ {1; 2; 3}. They use Paxos to exchange values consis-
tently over a network. Each of the processes can fail for some time, but will return eventually, never more than
one process will fail at the same time. Provide an execution of the following setups and count the number of
messages and round-trip times.

a) p1 wants to publish a value and no failures occur.

b) p1 uses and optimized version , where it only communicates with a quorum, again without failures!

c) Another iteration of b. optimized by using Multi-Paxos (System is already in a steady state).

d) The leader crashes in Multi-Paxos. What will happen?

e) A second proposer shows up in Multi-Paxos. What will happen?

f) p3 wants to publish a value and a failure occurs at the worst possible time. Maximise the number of messages!

g) An acceptor loses its memory after having made a promise. What could happen?

Solution:

a) The protocols goes through the usual two rounds of proposing/promising and accepting, requiring 4 exchanges
and 8 messages (see Figure 1). P1 also acts as acceptor, so that the majority is 2 acceptors overall.

b) Since a quorum of 2 acceptors is su�cient, communicating successfully with only another node (in our
example P2) is su�cient. As a results, only 4 messages are needed, but the number of exchanges stays the
same(see Figure 3).

c) In Multi-Paxos, a proposer which has achieved promises from the acceptors has become the �leader� and can
retain this role. As a result, any further proposal do not have to go through the �rst phase, and only the
second phase needs to be run (see Figure ??). Therefore, only 2 exchanges are needed and, as a consequence,
only 2 messages.

d) After some waiting time, another node will start the �rst stage of normal/not-multi Paxos. If the proposal
number of this new proposer is bigger than the proposal number of the �dead� proposer, it will succeed in
getting promises and become the leader. If the proposal number is too low, it will have later attempts (with
higher proposal numbers) until it eventually succeeds.

e) The argument is similar to the failure cases, only now we have to active proposers. Their respective proposal
numbers are compared, and depending on the values the new one may take over, the old one may keep its
role or the promises/accept rounds may change between both of them.

f) The worst cases would trigger a race by two proposers to complete their proposals. In the absence of any
mitigating strategies (like randomized wait times), the protocol may be in livelock, producing an in�nite
number of messages.



p1

p2

p3

Time

prepare(n) promise(n,{V2,V3})

accept(n,{Vx})

accepted(n,{Vx})

a) p1 wants to publish a value and no failures occur.

Figure 1: Protocol Flow for exercise a)

p1

p2

p3

Time

prepare(n) promise(n,{V2,V3})

accept(n,{Vx})

accepted(n,{Vx})

b) p1 uses and optimized version , where it only communicates with 

a quorum, again without failures!

Figure 2: Protocol Flow for exercise b)

g) The memory loss will eradicate the information on the proposals it has accepted and the promises it made.
As a result, it may promise and accept proposals with lower proposal numbers, possibly leading to the
acceptance of proposals that would not have gained the quorum.

p1

p2

p3

Time

accept(n+1,{Vx}) accepted(n+1,{Vx})

c) Another iteration of b. optimized by using Multi-Paxos
(System is already in a steady state).

accept(n+2,{Vx})

accepted(n+2,{Vx})

Figure 3: Protocol Flow for exercise c)

Exercise 2

Consider the following schedules.

S1: R3X R2Y W2Y R1Y W1Y R2X W2X R1X W1X W3Z.

S2: R3X R2Y W2Y R1Y W1Y R2X W2X R1X W1X W3Y .

S3: R1Y W1Y R2Y W2Y R2X W2X R3Z W3X R1X W1X.

For each schedule give its con�ict graph. Which schedules are serializable, which are not?

Solution:



CG(S1):

T1

T3

T2

CG(S2):

T1

T3

T2
CG(S3):

T1

T3

T2

S1 is serializable, S2, S3 are not serializable.

Exercise 3

Assume on a database three transactions are being executed.

a) The transactions are of the form: T1 : RA WA
T2 : RA WA
T3 : RA WA

(i) How many serial schedules do exist for T1, T2, T3? Give the reasons!

(ii) How many serializable schedules do exist for T1, T2, T3, which are not serial ones? Give the reasons!

b) The transactions are of the form: T1 : RA WC
T2 : RB WA
T3 : RC WD

(i) How many schedules do exist for T1, T2, T3, which are not serializable? Give the reasons!

(ii) Applying 2-phase-locking, is it possible that all serializable schedules may occur? Give the reasons!

Solution:

(ai) 6 - all possible permutations

(aii) none - every non-serial schedule either contains Ri...Rj ...Wi...Wj ... or Ri...Rj ...Wj ...Wi... where i 6= j. Both groups of actions
lead to cycles in the con�ict graph

bi) None - There only a con�ict between T1 and T2 as well T1 and T3, respectively, but no con�ict between T2 and T3. As a result,
no schedule could ever generate a cycle in the con�ict graph.

(bii) No - the following schedule provides a counterexample:

S = R1A R2B W2A R3C W3D W1C

In order to generate the pre�x R1A R2B W2A of the schedule S within the constraints of 2PL, U1A has to occur before W2A.
Because of W1C and the constraints of 2P L1C has to precede U1A. Furthermore U1C has to follow W1C. This yields (without
restricting generality) the following order of Lock- and Unlock operations in the schedule

S = L1A R1A L2B R2B L1C U1A W2A R3C W3D W1C U1C

With this order under 2PL, T3 cannot be executed.

3


