)

Chapter 1
Basics & System Models

Distributed Systems

SS 2015

Fabian Kuhn

UNI

FREIBURG



What is a Distributed System?

UNI
I

FREIBURG

A distributed system is a collection of individual
computing devices that can communicate with
each other.

Each processor in a distributed system generally

has its semiindependent agenda, but for various

reasons, including sharing of resources, availabi-
lity, and fault tolerance, processors need to coor-
dinate their actions.

[Attiya, Welch 2004]

Distributed Systems, SS 2015 Fabian Kuhn



Why are Distributed Systems Important?

UNI
I

FREIBURG

Distributed systems are everywhere!

e The Internet

e WWW

 Local area networks, corporate networks, ...
e Parallel architectures, multi-core computers
e Cell phones

e Internet applications

e Peer-to-peer networks

 Data centers

Distributed Systems, SS 2015 Fabian Kuhn



Why are Distributed Systems Important?

UNI
I

FREIBURG

Distributed systems allow to

* share data between different places

 handle much larger amounts of data

e parallelize computations across many machines
e build systems that span large distances

e build communication infrastructures

and also to

e build robust and fault-tolerant systems

Distributed Systems, SS 2015 Fabian Kuhn 4



Why are Distributed Systems Different?

UNI
FREIBURG

In distributed systems, we need to deal with many aspects and
challenges besides the ones in non-distributed systems.

Some challenges in distributed systems:

How to organize a distributed system

— how to share computation / data, communication infrastructure, ...
There is often no global time
Coordination of multiple (potentially heterogeneous) nodes
Agreement on steps to perform

All of this in the presence of asynchrony (unpredictable
delays), message losses, and faulty, lazy, malicious, or selfish
nodes

Distributed Systems, SS 2015 Fabian Kuhn 5



Why Theory?

UNI
I

FREIBURG

For distributed systems, we don’t have the kind of tools for
managing complexity like in standard sequential programming!

Main reason: a lot of inherent nondeterminism

e unpredictable delays, failures, actions, concurrency, ...
* no node has a global view

e |eads to a lot of uncertainty!

It is much harder to get distributed systems right
 Important to have theoretical tools to argue about correctness

e Correctness may be theoretical, but an incorrect system has
practical impact!

e Easier to go from theory to practice than vice versa ...

Distributed Systems, SS 2015 Fabian Kuhn 6



Distributed System Models

UNI

FREIBURG

Two basic abstract models for studying distributed systems...

Message Passing:
 Nodes/processes interact by
exchanging messages
e Fully connected topology
or arbitrary network

Shared Memory:
e Processes interact by
reading/writing

from/to common

global memory

Distributed Systems, SS 2015 Fabian Kuhn



Distributed System Models

UNI

FREIBURG

Message Passing
e Used to model large (decentralized) systems and networks

e Except for small-scale systems, real systems are implemented
based on exchanging messages

e Certainly the right model for large systems that use a large
number of machines, but also for many other practical systems

Shared Memory
e (Classic model to study many standard coordination problems

e Models multi-core processors and also multi-threaded programs
on a single machine

 Most convenient abstraction for programming

Distributed Systems, SS 2015 Fabian Kuhn 8



Distributed System Models

UNI

FREIBURG

Message Passing vs. Shared Memory
e Generally, the two models can simulate each other

— One can implement the functionality of a shared memory system
based on exchanging messages

— One can implement the functionality of a message passing system
based on using a shared memory

 Most things we discuss hold for both models

 We will study both models and we will switch back and forth
between the models (as convenient)

Distributed Systems, SS 2015 Fabian Kuhn



UNI

Synchrony

FREIBURG

Synchronous systems:

e System runs in synchronous time steps (usually called rounds)
— Discrete time 0,1, 2, 3, 4, ...
— Round r takes place between timer — 1 and time r

Synchronous message passing:

* Roundr:
At time r — 1, each process sends out messages (or a single msg.)
Messages are delivered and processed at time r

Synchronous shared memory:

* In each round (at each time step), every process can access one
memory cell

Distributed Systems, SS 2015 Fabian Kuhn 10



Synchrony

UNI

FREIBURG

Asynchronous systems:

 Process speeds and message delays are finite but otherwise
completely unpredictable

e Assumption: process speeds / message delays are determined
in @ worst-case way by an adversarial scheduler

Asynchronous message passing:
 Messages are always delivered (in failure-free executions)
e Message delays are arbitrary (chosen by an adversary)

Asynchronous shared memory:
e All processes eventually do their next steps (if failure-free)
* Process speeds are arbitrary (chosen by an adversary)

Distributed Systems, SS 2015 Fabian Kuhn 11



Synchrony

UNI

FREIBURG

There are modeling assumptions between completely
synchronous and completely asynchronous systems.

 Bounded message delays / process speeds:
Nodes can measure time differences and there is a (known)
upper bound T on message delays / time to perform 1 step.
— Model is equivalent to the synchronous model
— 1 round =T time units

e Partial synchrony:
There is an upper bound on message delays / process speeds
— Variant 1: upper bound is not known to the nodes / processes
— Variant 2: upper bound only starts to hold at some unknown time

Distributed Systems, SS 2015 Fabian Kuhn

12



Failures

UNI

FREIBURG

Crash Failure:
A node / process stops working at some point in the execution
e Can be in the middle of a round (in synchronous systems)
— some of the messages might already be transmitted...
Byzantine Failure:
 Anode / process (starts) behaving in a completely arbitrary way
e Different Byzantine nodes might collude

Omission Failure:
* Node / process / communication link stops working temporarily
e E.g.,, some messages get lost

Resilience:
 Number of failing nodes / processes tolerated

Distributed Systems, SS 2015 Fabian Kuhn 13



Correctness of Distributed Systems

UNI
FREIBURG

When dealing with distributed systems and protocols, there are
different kinds correctness properties.

The three most important ones are...

Safety: Nothing bad every happens

Liveness: Something good eventually happens

Fairness: Something good eventually happens to everyone

Distributed Systems, SS 2015 Fabian Kuhn 14



Safety

UNI
I

FREIBURG

Nothing bad ever happens.

Equivalent: There are no bad reachable states in the system

Example:
e At each pointintime, ‘ |_

at most one of the two
traffic lights is green.

=D

Proving safety:
e Safety is often proved using invariants
e Every possible state transition keeps a safe system safe

Distributed Systems, SS 2015 Fabian Kuhn 15



Liveness

UNI

FREIBURG

Something good eventually happens.

Example:

e My email is eventually either delivered or returned to me.

Remark:

 Not a property of a system state but of system executions
e Property must start holding at some finite time

Proving liveness:

e Proofs usually depend on other more basic liveness properties,
e.g., all messages in the system are eventually delivered

Distributed Systems, SS 2015 Fabian Kuhn 16



Fairness

UNI
FREIBURG

Something good eventually happens to everybody.

e Strong kind of liveness property that avoids starvation

Starvation: Some node / process cannot make progress

Example 1: System that provide food to people

* Liveness properties:
— Somebody gets food
— System provides enough food for everybody

Example 2: Mutual Exclusion (exclusive access to some resource)
* Liveness properties:

— some process can access the resource
— the resource can be accessed infinitely often

Distributed Systems, SS 2015 Fabian Kuhn 17



Safety, Liveness and Fairness

Traffic Light Example

UNI
I

FREIBURG

ddd

] -
Safety: At most one of the two lights N N
is green at each point in time.

Liveness: There is a green light infinitely often

Fairness: Both lights are green infinitely often

Distributed Systems, SS 2015 Fabian Kuhn

ddd
N




Message Passing : More Formally

UNI
I

FREIBURG

General remark: We’ll try to keep the formalism as low as possible,
however some formalism is needed to argue about correctness.

* For detailed models: [Attiya,Welch 2004], [Lynch 1996]

Basic System Model:

1. System consists of n (deterministic) nodes/processes vy, ..., v,
and of pairwise communication channels

— implicit assumption that nodes are numbered 1, ..., n, n is known
— sometimes, we want to relax this condition

‘\‘Dv’l’?&a?
2. At each time, each node v; has some internal state Q;

3. System is event-based: states change based on discrete events

Distributed Systems, SS 2015 Fabian Kuhn 19



Event-Based Model

UNI
FREIBURG

Internal State of a Node:
* Inputs, local variables, possibly some local clocks
e History of the whole sequence of observed events

Types of Events:

* Send Event: Some node v; puts a message on the
communication channel to node v;

* Receive Event: Node v; receives a message
— must be preceded by a corresponding send event

 Timing Event: Event triggered at a node by some local clock

Remarks:

e Events might trigger local computations which might trigger
other events

Distributed Systems, SS 2015 Fabian Kuhn 20



Schedules and Executions

UNI
I

FREIBURG

Configuration C: Set (vector) of all n node states (at a given time)

——m—

— configuration = system state

Execution Fragment:
Sequence of alternating configurations and events

d Example: Co, ¢1, Cl' ¢2, Cz, ¢3,
— C; are configurations, ¢; are events

e Eachtriple C;_1, ¢;, C; needs to be consistent with the transition

rules for event ¢;
— e.g., rcv. event ¢; only affects the state of the node that received the msg.

Execution: execution fragment that starts with initial config. C,

Schedule: execution without the configurations, but including inputs
(the sequence of events of an execution & the inputs)

Distributed Systems, SS 2015 Fabian Kuhn 21



UNI

Message Passing Model: Remarks

FREIBURG

Local State:

e State of a node v; does not include the states of messages sent
by v; (v; doesn’t know if the message has arrived / been lost)

Adversary:

 Within the timing guarantees of the model (synchrony
assumptions), execution/schedule is determined in a worst-case
way (by an adversary)

Deterministic nodes:
* |Inthe basic model, we assume that nodes are deterministic

* |n some cases this will be relaxed and we consider nodes that can
flip coins (randomized algorithms)

 Model details / adversary more tricky

Distributed Systems, SS 2015 Fabian Kuhn 22



Local Schedules

UNI

A node v’s state is determined by v’s inputs and observable events.

Schedule Restriction/ 9634 €(' events V/WO(Q v‘.

* Given aschedule S, we define the restriction S|i as the
subsequence of S consisting v;’s inputs and of of all events
happening at node v;

Example:

* 3 nodes vy, vy, V3, send events s;; , receive events 7;;
/ ’

e Schedule § = /15,5:2'3,53-1,7"15,Séz,ril,tzg,51"3,521,7"3\1,7"12",1”32
511 = SI3 N3 5%, Ma
S|12 = 513/ (13, gu,
S|3 = S ag'n,r%vr’\ ) 122

Distributed Systems, SS 2015 Fabian Kuhn 23

FREIBURG



Graphical Representation of Executions

UNI
I

FREIBURG

Schedule S = 53,523,531, 713, 532, 131, 123, $13, S21, 131, 12, 132
Graphical representation of schedule / execution

5‘}3 N3 S '12 — S117

) \/ \
13 / -
Uy o M S12
3 \ S, — S1?

Vv

¢ ©® - >

e
Sy Sy 0y s 139

vg:

Distributed Systems, SS 2015 Fabian Kuhn 24



Indistinguishability

UNI

FREIBURG

Theorem (indistinguishability):
If for two schedules S and S’ and for a node v; with the same

inputs in S and S’, we have S|i = S'|i, if v; takes the next action, it

performs the same action in both schedules S and S'.

Proof:
e State of a node v; only depends on inputs and on S|i

 For deterministic nodes, the next action only depends on the
current state.

Lower Bounds / Impossibility Proofs:

e Most lower bounds and impossibility proofs for distributed
systems are based on indistinguishability arguments.

Distributed Systems, SS 2015 Fabian Kuhn

25



UNI

Asynchronous Executions

FREIBURG

* Only minimal restrictions on when messages are delivered and
when local computations are done

A schedule is called admissible if
a) there are infinitely many computation steps for each node

b) every message is eventually delivered

e a)and b) are two fairness conditions

e a)assumes that nodes do not explicitly terminate

e Alternative condition:
a’) every nodes has either infinitely many computation steps or
it reaches an explicit halting state

Distributed Systems, SS 2015 Fabian Kuhn 26



Example: Client-Server Computations ;

UNI
FREIBURG

e Most simple kind of interaction, practically extremely important!

Client code:
initially do

]

I

-

|
request )2
— By - send request to server
u
| V\response/ = upon receiving response do

client process response

server Server code:
upon receiving request do

e Correctness:
send response to client

Schedule is admissible =
After finitely many steps, client sends request

After finitely many steps, request messages is delivered at server
After finitely many steps, server sends response
After finitely many steps, response reaches client

AR

After finitely many steps, client processes response

Distributed Systems, SS 2015 Fabian Kuhn 27



