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Agreement Problems
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* |n order to offer any non-trivial distributed service, the nodes /
processes of a distributed system need to coordinate their
actions.

 Most basic coordination: agreeing on some action / fact/ ...

 We will study agreement problems in for various model
assumptions.

e To start, we consider a simple (but still interesting) one ...
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The Two Generals Problem
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Attack at
16:00°7

Attack at
14:00°7

e To win, the two red armies need attack together

e They need to agree on a time to attack the blue army
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The Two Generals Problem
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Attack at
16:00°7

Attack at
14:00°7

e Communication across the valley only by carrier pigeons

 Problem: pigeons might not make it

Distributed Systems, SS 2015 Fabian Kuhn 4



The Two Generals Problem
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Problem is relevant in the real world...

e Alice and Bob plan to go out on Saturday evening
e They need to agree on:

— when and where to meat
— who makes the dinner reservation

e They can only communicate by an unreliable messaging service

* Nodesin a network need to agree on
— who’s the leader for some computation
— which of two / several conflicting data accesses to perform
— whether to commit a distributed database transaction

Distributed Systems, SS 2015 Fabian Kuhn 5



UNI

Two Generals More Formally
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Model: two deterministic nodes, synchronous communication,
unreliable messages (messages can be lost)

Input: node starts with one of two possible inputs 0 or 1

— say input encodes time to attack

Output: Each node needs to decide either 0 or 1

Agreement: Both nodes must output the same decision (0 or 1)

Validity: If both nodes have the same input x € {0,1} and no
messages are lost, both nodes output x.

— If nodes start with different inputs or one or more messages are lost,
nodes can output 0 or 1 as long as they agree.

Termination: Both nodes terminate in a bounded # of rounds.

Distributed Systems, SS 2015 Fabian Kuhn 6



Solving the Two Generals Problem?
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Two Generals: Impossibility S/v = S‘Iv

E L\«S S«A’I(u‘-( g
E’ u u S,
* Execution E is indistinguishable from execution E’ for some

node v if v sees the same things in both executions.

— same inputs and messages (schedule)

Indistinguishability Proof:

e If E isindistinguishable from E’ for v, then v does the same
thing in both executions.
— We abuse notation and denote this by E|v = E'|v

——

Similarity:
e Consider all possible executions E4, E, ...
* Call E; and Ej similar if E;|v = E;|v for some node v

Ei ~ E] = El-|v = E]|v

smm———— e
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Two Generals: Impossibility
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Consider a chain Ey, E4, E,, ..., E}, of executions such that for all

\

i €{1,..,k}, E;_{ and E; are similar.
- Vie{l,..,k}: E;_; ~, E; for some node v

E;,( l v = E,‘,v B
— D Vv does 'H»( Samt 'Mm\kz (w Lfl*,' L €,
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Two Generals: Impossibility
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Proof Idea: Vi — Vv,

e Assume there is a T-round protocol
— Then, nodes can aﬁv—ays decide after exactly T rounds

e Construct sequence of executions Ey, E4, ..., E, s.t.
— Foralli € {1,...,k} E;_{ ~, E; for some node v € {vy, v}
— In Ey output needs to be 0 and in E}, output needs to be 1

Execution E :both inputs are 0, no messages are lost
Execution ET( : both inputs are 1, no messages are lost

E—;! \M:Jf"‘a——s 'pou\ o-uﬂ)ml O
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Two Generals: Impossibility
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Nodes always decide after exactly T rounds ouir..l : O
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| o -2 o |

P Cé-vuqu o(.‘\c HM

E /ag,———‘o\/"tu "KIJO‘\‘L\ V\»UJ{

f/“' ) Tk \':)ow*‘)w\‘\
\.-.w 5\, o\.\'("“¥ O

Distributed Systems, SS 2015 Fabian Kuhn 11



UNI

Two Generals: Impossibility
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Nodes always decide after exactly T rounds
Execution E; :both inputs are 0, no messages are lost
Execution E{ :one of the messagesinround T is lost

Execution E; :last message M is delivered in round ¢t
Execution E;, 1: drop message M

Execution E, : both inputs are 0, no messages are delivered
e All nodes output 0 (because of similarity chain)
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Two Generals: Impossibility
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Execution E,7 : both inputs are 0, no messages are delivered
e All nodes output 0 (because of similarity chain)

Execution E5r. q: input of v4 is 0, input of v, is 1, no msg. delivered

Execution E51, »: input of both nodes are 1, no msg. delivered

Execution E 41, »: input of both nodes are 1 and no msg. are lost
e from E,r,, to E4r. o deliver messages one by one

e same chain as from E to E,7, but in opposite direction

 In E47, 5, all nodes must output 1 = contradiction!
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Two Generals Impossibility: Summary
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 We start with an execution in which both nodes have input 0
and no messages are lost = both nodes must decide 0.

e We prune messages one by one to get a sequence of executions
s.t. consecutive executions are similar.

 From an execution with no messages delivered and both inputs
0, we can get to an execution with no messages delivered and
both inputs 1 (in two steps).

By adding back messages one-by-one, we get to an execution in
which both nodes have input 1 and no messages are lost
— both nodes must decide 1 = contradiction!

 Not hard to generalize to an arbitrary number n = 2 of nodes
e Upper bound on number of rounds not necessary

— as long as nodes need to decide in finite time

Distributed Systems, SS 2015 Fabian Kuhn 14



Two Generals: Randomized Algorithm
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e The two generals problem can be solved if
— we allow (one of) the two generals to flip coins

— we are satisfied if agreement is only achieved with probability 1 — ¢
(for € small enough)

e But first, we look at a simple algorithm:

The Level Algorithm (Overview):
e Both nodes compute a level
 Atthe end, the two levels differ by at most one

 The levels essentially measure the number of successful back
and forth transmissions
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The Level Algorithm

We
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1. Both levels are initialized to O

2. Ineach round:

Both nodes send their current level to each other

3. Assume node u with level £, receives level £, from v

u updates its level to £, :== max{?,,,
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The Level Algorithm: Example
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The Level Algorithm: Properties

Lemma: At all times, the two levels differ by at most one.

[u < ﬁv +1
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The Level Algorithm: Properties
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Lemma: If all messages are delivered, the two levels are equal to
the number of rounds.
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The Level Algorithm: Properties
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Lemma: The level £,, of a node w is 0 if and only if all of the
messages to u have been dropped.
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The Level Algorithm: Summary
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The Level Algorithm (between 2 nodes):
If the algorithm is run for r rounds:
At the end, the two levels differ by at most one

2. If all messages succeed, both levels are equal to r

The level £,, of a node u is = 1 if and only if u successfully
received at least one message
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The Randomized Two Generals Algorithm _
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e Assume that the two nodes are called u and v and that u is

the leader node (e.g., the one with lower ID).
ard

e Also, assume that the possible inputs are 0 and 1 —

1. Node u picks are (uniform) random number R € {1, ...,;}

—

2. The nodes run the level algorithm for r rounds

— In each message, both nodes also include their inputs and node u
also includes the value of R

3. Atthe end, a node decides 1 if and only if:

— Bothinputsareequalto 1
— The node knows R and it has seen both inputs

— The level of the nTade is=>R /{ - K
4. Otherwise, the node decides 0 W —

[ S

_——
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The Randomized Two Generals Algorithm
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Lemma: If at least one input is 0, both nodes output 0
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Lemma: If both inputs are 1, then both nodes

a) output 1 if no message is lost
b) output the same value unless {#,,¥,} = {72— 1,1

0\\ ij Q\J =0
Kh/(v 7’ R éﬂ'm’[i
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The Randomized Two Generals Algorithm
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Theorem: If at least one of the inputs is 0, both nodes output 0.
If both inputs are 1, if no message is lost, both nodes output 1,
otherwise both nodes output the same value with probability at
least 1 — 1/,

Lommigubpel samt value waless $, 203 = 921, 28
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Lower Bound on Error Probability
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Using similar techniques as for the impossibility of the deterministic
two problem, we can prove a lower bound on the error probability.

Stronger version of the problem (stronger validity condition):
e |f at least one inputis 0, both nodes need to output 0

— our randomized algorithm satisfies this

To prove the lower bound, we assume that if both inputs are 1,
e if no messages are lost, both outputs must be 1,

—_—

e otherwise, the nodes need to output the same value with

probability at least 1 — & (probabilistic agreement).
=
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Lower Bound on Error Probability
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Lower Bound on Error Probability
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Theorem: In the strong version of the two generals problem, if
nodes need to decide within r rounds, the probability € for not
agreeing on the same value (if both inputs are 1) is at least

1
E = —.
T
———

Remark: For the original version of the problem, a similar proof
givers a lower bound of
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