o Chapter 3

Broadcast, Convergecast,
and Spanning Trees

Distributed Systems
SS 2015
Fabian Kuhn

UNI

FREIBURG

Message Passing in Arbitrary Topologies _

UNI
FREIBURG

Assumption for this chapter:
e Network: message passing system with arbitrary topology
e network topology is given by an undirected graph ¢ = (V, E)

 Only overlap with “Network Algorithms” lecture

— with the lecture this morning...

Distributed Systems, SS 2015 Fabian Kuhn 2

Asynchronous Message Passing

UNI

FREIBURG

In this chapter: No failures, but asynchrony

Asynchronous message passing:
 messages are always delivered in finite time

— cf.: finite time = admissible schedule
* message delays are completely unpredictable
e algorithms are event-based:

upon receiving message from neighbor ..., do
some local computation steps
send message(s) to neighbor(s) ...

Distributed Systems, SS 2015 Fabian Kuhn

Broadcast

UNI

FREIBURG

e Simple, basic communication problem

Problem Description:

A source node s needs to broadcast a message M to all nodes
of the system (network)

e Each node has a unique ID

e Initially, each node knows the IDs of its neighbors

— or it can count / distinguish its neighbors by individual communication
ports to the pairwise communication links

Distributed Systems, SS 2015 Fabian Kuhn

Flooding

UNI

FREIBURG

 One of the simplest distributed (network) algorithms

Basic idea:
e When receiving M for the first time, forward to all neighbors

Algorithm:

e Source node s:
initially do
send M to all neighbors

e All other nodes u:
upon receiving M from some neighbor v
if M has not been received before then
send M to all neighbors except v

Distributed Systems, SS 2015 Fabian Kuhn

Flooding in Synchronous Systems

UNI

FREIBURG

Synchronous systems:
e time divided into synchronous rounds, msg. delay = 1 round
e time complexity: number of rounds

Progress in flooding algorithm:

Distributed Systems, SS 2015 Fabian Kuhn

Flooding in Synchronous Systems

UNI

FREIBURG

Synchronous systems:
e time divided into synchronous rounds, msg. delay = 1 round
e time complexity: number of rounds

Progress in flooding algorithm:

e after 1 round:
— all neighbors of s know M
— nodes at distance = 2 from s do not know M

e after 2 rounds:

— exactly nodes at distance < 2 from s know M

e after r rounds:

— exactly nodes at distance < r from s know M

Distributed Systems, SS 2015 Fabian Kuhn

Flooding in Synchronous Systems

UNI
I

FREIBURG

Radius: (Graph ¢ = (V,E))
e Givenanodes €V, radiusof sinG:

rad(G,s) = maxdist; (s, v)
vev

e radius of G:
rad(G) == minrad(G, s)

SeV

Diameter of G:

diam(G) = max dist.(u,v) = max rad(G,s)

Time complexity of flooding in synchronous systems: rad (G, s)
diam(G)

<rad(G) <rad(G,s) < diam(G)

Distributed Systems, SS 2015 Fabian Kuhn 8

Radius and Diameter

UNI

FREIBURG

Distributed Systems, SS 2015 Fabian Kuhn

Asynchronous Time Complexity

UNI

FREIBURG

 Time complexity of flooding in asynchronous systems?
e How is time complexity in asynchronous systems defined?

Assumptions:
e Message delays, time for local computations are arbitrary

— Algorithms cannot use any timing assumptions!

* For analysis:
— message delays < 1 time unit
— local computations take 0 time

Determine asynchronous time complexity:

1. determine running time of a given execution

2. asynch. time complexity = max. running time of any exec.

Distributed Systems, SS 2015 Fabian Kuhn

10

Asynchronous Time Complexity

UNI
I

FREIBURG

Running time of an execution:

e assign times to send and receive events such that
— order of all events remains unchanged
— local computations take 0 time
— message delays are at most 1 time unit
— first send event is at time 0
— time of last event is maximized

e essentially: normalize message delays such that the maximum
delay is 1 time unit

Definition Asynchronous Time Complexity:
Total time of a worst-case execution in which local computations
take time 0 and all message delays are at most 1 time unit.

Distributed Systems, SS 2015 Fabian Kuhn 11

Flooding in Asynchronous Systems

UNI

FREIBURG

Theorem: The time complexity of flooding from a source s in an
ansynchronous network G is rad (G, s).

Distributed Systems, SS 2015 Fabian Kuhn

12

Message Complexity of Flooding

UNI

FREIBURG

Message Complexity: Total number of messages sent

— total number of messages, over all nodes

What is the message complexity of flooding?

Theorem: The message complexity of flooding is O(|E).

— ongraph G = (V,E)

Distributed Systems, SS 2015 Fabian Kuhn

13

Flooding Spanning Tree

UNI

FREIBURG

 The flooding algorithm can be used to compute a spanning
tree of the network.

Idea:
e Source s is the root of the tree

e For all other nodes, neighbor from which M is received first is
the parent node.

Distributed Systems, SS 2015 Fabian Kuhn

14

Flooding Spanning Tree Algorithm

UNI
FREIBURG

Source node s:

initially do
parent := L

send M to all neighbors

Non-source node u:

// s is the root

upon receiving M from some neighbor v
if M has not been received before then

parent := v

send M to all neighbors except v

Distributed Systems, SS 2015

Fabian Kuhn

15

UNI
I

FREIBURG

Spanning Tree: Synchronous Systems

* |n tree: distance of v to root = round in which v is reached

* |n synchronous systems, a node v are reached in round r if and
only if dist;(s,v) =r

Shortest Path Tree = BFS Tree (BFS = breadth first search)
e tree which preserves graph distances to root node

Theorem: In synchronous systems, the flooding algorithm
constructs a BFS tree.

Distributed Systems, SS 2015 Fabian Kuhn 16

Spanning Tree: Asynchronous Systems

UNI
I

FREIBURG

How does the spanning tree look if comm. is asynchronous?

Observation: In asynchronous executions, the depth of the tree can
be n — 1 even if the radius/diameter of the graph is 1.

Distributed Systems, SS 2015 Fabian Kuhn 17

Convergecast

UNI
I

FREIBURG

* “Opposite” of broadcast

e Given a rooted spanning tree, communicate from all the
nodes to the root

Example: Compute sum of values in a rooted tree

Distributed Systems, SS 2015 Fabian Kuhn 18

UNI

Convergecast Algorithm

FREIBURG

Leaf node v:
initially do
send message to parent
(e.g., send input value)

Inner node u:
upon receiving message from child node v
if u has received messages from all children then
send message to parent
(e.g., send sum of all inputs in u’s subtree)

Root node r:
upon receiving message from child node v
if 7 has received messages from all children then
convergecast terminates

Distributed Systems, SS 2015 Fabian Kuhn 19

Convergecast: Analysis & Remarks

UNI
I

FREIBURG

Time Complexity:

Message Complexity:

Application of the convergecast algorithm:
e Computing functions, e.g.:

— min, max, sum, average, median, ...
e Termination detection

— inform parent as soon as all nodes in subtree have terminated

Distributed Systems, SS 2015 Fabian Kuhn 20

Flooding/Echo Algorithm

UNI

FREIBURG

e If aleader (root), but no spanning tree exists, flooding and
convergecast can be used together for computing functions, ...

1. Use flooding to construct a tree

2. Use convergecast (echo) to report back to the root when done

Time Complexity of Flooding + Convergecast (Echo):

Distributed Systems, SS 2015 Fabian Kuhn 21

UNI

Constructing Good Trees

FREIBURG

e When combining flooding and convergecast, the time
complexity is linear in the depth of the constructed tree.

* In synchronous systems, the tree is a BFS tree (shortest path
tree), i.e., the depth of the tree is O(diam(G))

— optimal time complexity: O(diam(G))

* |n asynchronous systems, the time complexity can be Q(n),
even if the graph has a very small diameter!

e Convergecast / low diameter spanning trees are important!

e How can be construct a BFS tree in an asynchronous system?

Distributed Systems, SS 2015 Fabian Kuhn 22

Constructing Shortest Path Tree

Dijkstra
e Grow tree from source s

e Atintermediate step t, subtree of all nodes at distance < 1}
from source node s

 Next step: add node with min. distance to s

Bellman-Ford
e Each node v keeps a distance estimate d,, to s
— initially: d¢ = 0, d, = oo (forall v # s)
* In each step, all nodes update their estimate based on

neighbor estimates:

d, = min {dv,urer}\}g)){du + 1}}

Distributed Systems, SS 2015 Fabian Kuhn

UNI
I

FREIBURG

Distributed Dijkstra

UNI
FREIBURG

* |nour case, the graph is unweighted
e We can therefore grow the tree level by level

— Essentially like in a synchronous execution

e Assume, the tree is constructed up to distance r from s
e How can we add the next level?

Distributed Systems, SS 2015 Fabian Kuhn 24

Distributed Dijkstra

UNI
I

FREIBURG

e Source/root node coordinates the phases

Algorithm for Phase + 1:
1. Root node broadcasts “start phase r + 1” in current tree
2. Leaf nodes (level r nodes) send “join r + 1” to neighbors

3. Node v receiving “join r + 1” from neighbor u:

1. First such message: u becomes parent of v, v sends ACK to u
2. Otherwise, v sends NACK to u

4. After receiving ACK or NACK from all neighbors, level r nodes
report back to root by starting a convergecast

5. When the convergecast terminates at the root, the root can
start the next phase

Distributed Systems, SS 2015 Fabian Kuhn 25

Distributed Dijkstra: Analysis

UNI
I

FREIBURG

Time Complexity:

Message Complexity:

Distributed Systems, SS 2015

Fabian Kuhn

26

Distributed Bellman-Ford

UNI
FREIBURG

Basic Idea:

e Each node u stores an integer d,, with the current guess for the
distance to the root node s

e Whenever a node u can improve d,,, u informs its neighbors

Algorithm:
1. Initialization: d; := 0, for v # s:d,, := oo, parent,, :=1
2. Root s sends “1” to all neigbors

3. For all other nodes u:
upon receiving message “x” with x < d,, from neighbor v do
setd, ==y
set parent, := v
send “x 4+ 1” to all neighbors (except v)

Distributed Systems, SS 2015 Fabian Kuhn 27

Distr. Bellman-Ford: Time Complexity

UNI

FREIBURG

Theorem: The time complexity of the distributed Bellman-Ford
algorithms is rad (G, s) = O(diam(G)).

Distributed Systems, SS 2015 Fabian Kuhn

28

Distr. Bellman-Ford: Message Complexity _

UNI
FREIBURG

Theorem: The message complexity of the distributed Bellman-Ford
algorithmsis O(|E| - |V).

Distributed Systems, SS 2015 Fabian Kuhn 29

Distributed BFS Tree Construction

UNI

FREIBURG

Synchronous
* Time: O(diam(G)), Messages: O(|E|)
* both optimal

Asynchronous

e Distributed Dijkstra:
Time: O(diam(G)?), Messages: O(IEI + |V] - diam(G))

e Distributed Bellman-Ford:
Time: O(diam(G)), Messages: O(|E]| - |[V])

 Best known trade-off between time and messages:
Time: O(diam(G) - log3|V|), Messages: O(|E| + |V| - log3|V])

— based on synchronizers
(generic way of translating synchronous algorithms into asynch. ones)

Distributed Systems, SS 2015 Fabian Kuhn 30

UNI

Synchronizers

FREIBURG

Motivation:

e synchronous algorithms are often simpler and more efficient
than asynchronous ones

 however, often real systems are asynchronous
Goal: Run synchronous algorithms in asynchronous systems

Synchronizer:
e Locally simulates rounds at all nodes

 Needs to make sure that when running a synchronous algorithm
using the locally simulated rounds:

The local schedules are the same as in the synchronous exec.

Distributed Systems, SS 2015 Fabian Kuhn 31

Simple Local Synchronizer

UNI

FREIBURG

Locally simulating rounds (node u):
e Node u generates clock pulses to start each new round

e Before starting round 7, u needs to make sure that all
messages of round r — 1 have been received.

e After starting round 7, u sends all messages of round r

Making sure that all messages of current round are received:

 Need to know which neighbors want to send messages
e Easy if all neighbors send a message

e Solution:
In each round, all nodes send a message to all neighbors

— If the synch. algorithm does not send a message, send a dummy
message instead

Distributed Systems, SS 2015 Fabian Kuhn

32

UNI

Simple Local Synchronizer

FREIBURG

Simulate Round r:
1. Wait until round r — 1 msg. from all neighbors are received
2. Send round r msg. to all neighbors

— send dummy msg. to nodes to which no ordinary msg. is sent

Theorem: Algorithm correctly allows to run a synchronous alg. in an
asynchronous system.

Distributed Systems, SS 2015 Fabian Kuhn 33

Simple Local Synchronizer

UNI
I

FREIBURG

Theorem: In an asynchronous system, if all nodes start simulation
at time 0, the time complexity to simulate R rounds is R.

Theorem: The total number of dummy messages to simulate R
rounds is at most O(R - |E|).

Distributed Systems, SS 2015 Fabian Kuhn 34

Synchronizer §

UNI
I

FREIBURG

Synchronizer Time Complexity T(S):

e Time complexity for simulating one round

Synchronizer Message Complexity M(S):

e Number of control messages for simulating one round

Simple Synchronizer:
e Time Complexity: 1

Other trade-offs between time and message complexity are

possible, e.g.,
— T(S) = 0(og|V]),

Message Complexity: 2|E|

M(S) = o(V])

— T(S) = M(S) = 0(log®|V|)

— More details in the Network Algorithms lecture!

Distributed Systems, SS 2015

Fabian Kuhn

35

UNI

BFS Tree with Synchronizer

FREIBURG

Synchronous BFS Tree Construction:
e Time Complexity: O(diam(G)) Message Complexity: O(|E|)

Asynchronous BFS Tree Constr. Using Synchronizer S:
* Time Complexity: O(diam(G) : T(S))
e Msg. Complexity: O(IEI + diam(G) - M(S))

With Simple Synchronizer:
e Time Compl.: O(diam(G)) Msg. Compl.: O(diam(G) - |E|)
e Slightly better than distributed Bellman-Ford

e Best BFS algorithm is based on best known synchronizer

Distributed Systems, SS 2015 Fabian Kuhn 36

Leader Election

UNI
FREIBURG

Task: Each node has an input value, compute sum of values

Solution: Compute spanning tree and use convergecast on
spanning tree (i.e., flooding + convergecast)

Problem: What if we don’t have a source/root node?

We need to choose a root node
e known as the leader election problem

Solving leader election:
e E.g.: Choose node with smallest ID
e How to find node with smallest ID?

Distributed Systems, SS 2015 Fabian Kuhn 37

Solving Leader Election

UNI

FREIBURG

Choose node with smallest ID

Algorithm for node u:
 Node u stores smallest known ID in variable x,,
1. [Initially, u sets x,, == ID,, and sends x,, to all neighbors

2. when receiving x,, < x,, from neighbor v:
Xy = Xy
send x,, to all neighbors (except v)

Time Complexity:

Distributed Systems, SS 2015 Fabian Kuhn

38

Solving Leader Election

UNI

FREIBURG

Choose node with smallest ID

Algorithm for node u:
 Node u stores smallest known ID in variable x,,
1. [Initially, u sets x,, == ID,, and sends x,, to all neighbors

2. when receiving x,, < x,, from neighbor v:
Xy = Xy
send x,, to all neighbors (except v)

Message Complexity:

Distributed Systems, SS 2015 Fabian Kuhn

39

Leader Election

UNI
FREIBURG

Simple leader election algorithm has time complexity O(diam(G))
and message complexity O(|V| - |E|).

Problems:

While time compl. is optimal, msg. complexity is extremely high
It is not clear when/how to terminate

Like for BFS tree construction, there are many possible trade-offs
between time and message complexity, e.g.:

— Time Complexity: O(|V]), Message Complexity: O(|E| + |V] - log|V|)

Termination can be solved (at some cost)
More on leader election: Network Algorithms Lecture

Distributed Systems, SS 2015 Fabian Kuhn 40

