

Chapter 3 Broadcast, Convergecast, and Spanning Trees

Distributed Systems

SS 2015

Fabian Kuhn

Message Passing in Arbitrary Topologies

Assumption for this chapter:

- Network: message passing system with arbitrary topology
- network topology is given by an undirected graph G = (V, E)

- Only overlap with "Network Algorithms" lecture
 - with the lecture this morning...

Asynchronous Message Passing

In this chapter: No failures, but asynchrony

Asynchronous message passing:

- messages are always delivered in finite time
 - cf.: finite time \rightarrow admissible schedule
- message delays are completely unpredictable
- algorithms are event-based:

upon receiving message from neighbor ..., do some local computation steps send message(s) to neighbor(s) ...

Broadcast

Simple, basic communication problem

Problem Description:

- A source node s needs to broadcast a message M to all nodes of the system (network)
- Each node has a unique ID
- Initially, each node knows the IDs of its neighbors
 - or it can count / distinguish its neighbors by individual communication ports to the pairwise communication links

Flooding

One of the simplest distributed (network) algorithms

Basic idea:

When receiving M for the first time, forward to all neighbors

Algorithm:

- Source node s:
 initially do
 send M to all neighbors
- All other nodes u:

 upon receiving M from some neighbor vif M has not been received before then

 send M to all neighbors except v

Flooding in Synchronous Systems

Synchronous systems:

- time divided into synchronous rounds, msg. delay = 1 round
- time complexity: number of rounds

Progress in flooding algorithm:

Flooding in Synchronous Systems

Synchronous systems:

- time divided into synchronous rounds, msg. delay = 1 round
- time complexity: number of rounds

Progress in flooding algorithm:

- after 1 round:
 - all neighbors of s know M
 - nodes at distance ≥ 2 from s do not know M
- after 2 rounds:
 - exactly nodes at distance ≤ 2 from s know M
- ...
- after r rounds:
 - exactly nodes at distance $\leq r$ from s know M

Flooding in Synchronous Systems

Radius: (Graph
$$G = (V, E)$$
)

• Given a node $s \in V$, radius of s in G:

$$rad(G,s) \coloneqq \max_{v \in V} dist_G(s,v)$$

• radius of *G*:

$$rad(G) \coloneqq \min_{s \in V} rad(G, s)$$

Diameter of G:

$$diam(G) := \max_{u,v \in V} dist_G(u,v) = \max_{s \in V} rad(G,s)$$

Time complexity of flooding in synchronous systems: rad(G, s)

$$\frac{diam(G)}{2} \le rad(G) \le rad(G,s) \le diam(G)$$

Radius and Diameter

Asynchronous Time Complexity

- Time complexity of flooding in asynchronous systems?
- How is time complexity in asynchronous systems defined?

Assumptions:

- Message delays, time for local computations are arbitrary
 - Algorithms cannot use any timing assumptions!
- For analysis:
 - message delays ≤ 1 time unit
 - local computations take 0 time

Determine asynchronous time complexity:

- 1. determine running time of a given execution
- 2. asynch. time complexity = max. running time of any exec.

Asynchronous Time Complexity

Running time of an execution:

- assign times to send and receive events such that
 - order of all events remains unchanged
 - local computations take 0 time
 - message delays are at most 1 time unit
 - first send event is at time 0
 - time of last event is maximized
- essentially: normalize message delays such that the maximum delay is 1 time unit

Definition Asynchronous Time Complexity:

Total time of a worst-case execution in which local computations take time 0 and all message delays are at most 1 time unit.

Flooding in Asynchronous Systems

Theorem: The time complexity of flooding from a source s in an ansynchronous network G is rad(G,s).

Message Complexity of Flooding

Message Complexity: Total number of messages sent

total number of messages, over all nodes

What is the message complexity of flooding?

Theorem: The message complexity of flooding is O(|E|).

- on graph G = (V, E)

Flooding Spanning Tree

 The flooding algorithm can be used to compute a spanning tree of the network.

Idea:

- Source s is the root of the tree
- For all other nodes, neighbor from which M is received first is the parent node.

Flooding Spanning Tree Algorithm

Source node s:

```
initially do
```

```
parent := \bot // s is the root send M to all neighbors
```

Non-source node u:

upon receiving M from some neighbor v

if M has not been received before then

parent := v

send M to all neighbors except v

Spanning Tree: Synchronous Systems

- In tree: distance of v to root = round in which v is reached
- In synchronous systems, a node v are reached in round r if and only if $dist_G(s,v)=r$

Shortest Path Tree = BFS Tree (BFS = breadth first search)

tree which preserves graph distances to root node

Theorem: In synchronous systems, the flooding algorithm constructs a BFS tree.

Spanning Tree: Asynchronous Systems

How does the spanning tree look if comm. is asynchronous?

Observation: In asynchronous executions, the depth of the tree can be n-1 even if the radius/diameter of the graph is 1.

Convergecast

- "Opposite" of broadcast
- Given a rooted spanning tree, communicate from all the nodes to the root

Example: Compute sum of values in a rooted tree

Convergecast Algorithm


```
Leaf node v: initially do
```

send message to parent (e.g., send input value)

Inner node u:

upon receiving message from child node v if u has received messages from all children then send message to parent

(e.g., send sum of all inputs in u's subtree)

Root node *r*:

upon receiving message from child node v **if** r has received messages from all children **then** convergecast terminates

Convergecast: Analysis & Remarks

Time Complexity:

Message Complexity:

Application of the convergecast algorithm:

- Computing functions, e.g.:
 - min, max, sum, average, median, ...
- Termination detection
 - inform parent as soon as all nodes in subtree have terminated
- ...

Flooding/Echo Algorithm

- If a leader (root), but no spanning tree exists, flooding and convergecast can be used together for computing functions, ...
- 1. Use flooding to construct a tree
- 2. Use convergecast (echo) to report back to the root when done

Time Complexity of Flooding + Convergecast (Echo):

Constructing Good Trees

- When combining flooding and convergecast, the time complexity is linear in the depth of the constructed tree.
- In synchronous systems, the tree is a BFS tree (shortest path tree), i.e., the depth of the tree is O(diam(G))
 - optimal time complexity: O(diam(G))
- In asynchronous systems, the time complexity can be $\Omega(n)$, even if the graph has a very small diameter!
- Convergecast / low diameter spanning trees are important!
- How can be construct a BFS tree in an asynchronous system?

Constructing Shortest Path Tree

Dijkstra

- Grow tree from source s
- At intermediate step t, subtree of all nodes at distance $\leq r_t$ from source node s
- Next step: add node with min. distance to s

Bellman-Ford

- Each node v keeps a distance estimate d_v to s
 - initially: $d_s = 0$, $d_v = \infty$ (for all $v \neq s$)
- In each step, all nodes update their estimate based on neighbor estimates:

$$d_v = \min\left\{d_v, \min_{u \in N(v)} \{d_u + 1\}\right\}$$

Distributed Dijkstra

- In our case, the graph is unweighted
- We can therefore grow the tree level by level
 - Essentially like in a synchronous execution
- Assume, the tree is constructed up to distance r from s
- How can we add the next level?

Distributed Dijkstra

Source/root node coordinates the phases

Algorithm for Phase r + 1:

- 1. Root node broadcasts "start phase r + 1" in current tree
- 2. Leaf nodes (level r nodes) send "join r + 1" to neighbors
- 3. Node v receiving "join r + 1" from neighbor u:
 - 1. First such message: u becomes parent of v, v sends ACK to u
 - 2. Otherwise, v sends *NACK* to u
- 4. After receiving ACK or NACK from all neighbors, level r nodes report back to root by starting a convergecast
- 5. When the convergecast terminates at the root, the root can start the next phase

Distributed Dijkstra: Analysis

Time Complexity:

Message Complexity:

Distributed Bellman-Ford

Basic Idea:

- Each node u stores an integer d_u with the current guess for the distance to the root node s
- Whenever a node u can improve d_u , u informs its neighbors

Algorithm:

- 1. Initialization: $d_s \coloneqq 0$, for $v \neq s$: $d_v \coloneqq \infty$, parent $_v \coloneqq \bot$
- 2. Root *s* sends "1" to all neigbors
- 3. For all other nodes *u*:

```
upon receiving message "x" with x < d_u from neighbor v do set d_u \coloneqq y set parent_u \coloneqq v send "x + 1" to all neighbors (except v)
```

Distr. Bellman-Ford: Time Complexity

Theorem: The time complexity of the distributed Bellman-Ford algorithms is rad(G, s) = O(diam(G)).

Distr. Bellman-Ford: Message Complexity

Theorem: The message complexity of the distributed Bellman-Ford algorithms is $O(|E| \cdot |V|)$.

Distributed BFS Tree Construction

Synchronous

- Time: O(diam(G)), Messages: O(|E|)
- both optimal

Asynchronous

• Distributed Dijkstra:

Time: $O(diam(G)^2)$, Messages: $O(|E| + |V| \cdot diam(G))$

Distributed Bellman-Ford:

Time: O(diam(G)), Messages: $O(|E| \cdot |V|)$

• Best known trade-off between time and messages:

Time: $O(diam(G) \cdot \log^3 |V|)$, Messages: $O(|E| + |V| \cdot \log^3 |V|)$

based on synchronizers
 (generic way of translating synchronous algorithms into asynch. ones)

Synchronizers

Motivation:

- synchronous algorithms are often simpler and more efficient than asynchronous ones
- however, often real systems are asynchronous

Goal: Run synchronous algorithms in asynchronous systems

Synchronizer:

- Locally simulates rounds at all nodes
- Needs to make sure that when running a synchronous algorithm using the locally simulated rounds:

The local schedules are the same as in the synchronous exec.

Simple Local Synchronizer

Locally simulating rounds (node u):

- Node u generates clock pulses to start each new round
- Before starting round r, u needs to make sure that all messages of round r-1 have been received.
- After starting round r, u sends all messages of round r

Making sure that all messages of current round are received:

- Need to know which neighbors want to send messages
- Easy if all neighbors send a message

Solution:

In each round, all nodes send a message to all neighbors

 If the synch. algorithm does not send a message, send a dummy message instead

Simple Local Synchronizer

Simulate Round *r*:

- 1. Wait until round r-1 msg. from all neighbors are received
- 2. Send round r msg. to all neighbors
 - send dummy msg. to nodes to which no ordinary msg. is sent

Theorem: Algorithm correctly allows to run a synchronous alg. in an asynchronous system.

Simple Local Synchronizer

Theorem: In an asynchronous system, if all nodes start simulation at time 0, the time complexity to simulate R rounds is R.

Theorem: The total number of dummy messages to simulate R rounds is at most $O(R \cdot |E|)$.

Synchronizer S

Synchronizer Time Complexity T(S):

Time complexity for simulating one round

Synchronizer Message Complexity M(S):

Number of control messages for simulating one round

Simple Synchronizer:

• Time Complexity: 1 Message Complexity: 2|E|

Other trade-offs between time and message complexity are possible, e.g.,

$$- T(S) = O(\log |V|), \quad M(S) = O(|V|)$$

$$- T(S) = M(S) = O(\log^3 |V|)$$

More details in the Network Algorithms lecture!

BFS Tree with Synchronizer

Synchronous BFS Tree Construction:

• Time Complexity: O(diam(G)) Message Complexity: O(|E|)

Asynchronous BFS Tree Constr. Using Synchronizer S:

- Time Complexity: $O(diam(G) \cdot T(S))$
- Msg. Complexity: $O(|E| + diam(G) \cdot M(S))$

With Simple Synchronizer:

- Time Compl.: O(diam(G)) Msg. Compl.: $O(diam(G) \cdot |E|)$
- Slightly better than distributed Bellman-Ford
- Best BFS algorithm is based on best known synchronizer

Leader Election

Task: Each node has an input value, compute sum of values

Solution: Compute spanning tree and use convergecast on spanning tree (i.e., flooding + convergecast)

Problem: What if we don't have a source/root node?

We need to choose a root node

known as the leader election problem

Solving leader election:

- E.g.: Choose node with smallest ID
- How to find node with smallest ID?

Solving Leader Election

Choose node with smallest ID

Algorithm for node u:

- Node u stores smallest known ID in variable x_u
- 1. Initially, u sets $x_u \coloneqq \mathrm{ID}_u$ and sends x_u to all neighbors
- 2. when receiving $x_v < x_u$ from neighbor v:

$$x_u \coloneqq x_v$$

send x_u to all neighbors (except v)

Time Complexity:

Solving Leader Election

Choose node with smallest ID

Algorithm for node u:

- Node u stores smallest known ID in variable x_u
- 1. Initially, u sets $x_u \coloneqq \mathrm{ID}_u$ and sends x_u to all neighbors
- 2. when receiving $x_v < x_u$ from neighbor v:

$$x_u \coloneqq x_v$$

send x_u to all neighbors (except v)

Message Complexity:

Leader Election

Simple leader election algorithm has time complexity O(diam(G)) and message complexity $O(|V| \cdot |E|)$.

Problems:

- While time compl. is optimal, msg. complexity is extremely high
- It is not clear when/how to terminate
- Like for BFS tree construction, there are many possible trade-offs between time and message complexity, e.g.:
 - Time Complexity: O(|V|), Message Complexity: $O(|E| + |V| \cdot \log |V|)$
- Termination can be solved (at some cost)
- More on leader election: Network Algorithms Lecture