)

Chapter 4
Causality, Logical Time,

and Global States
Distributed Systems
SS 2015
Fabian Kuhn

UNI

FREIBURG



Logical Clocks

UNI

FREIBURG

Goal: Assign a timestamp to all events in an asynchronous
message-passing system

e Allows to give the nodes some notion of time

— which can be used by algorithms

e Logical clock values: numerical values that increase over time
and which are consistent with the observable behavior of the
system

e The objective here is not to do clock synchronization:

Clock Synchronization: compute logical clocks at all nodes
which simulate real time and which are tightly synchronized.

— Might be the topic of a later chapter...

Distributed Systems, SS 2015 Fabian Kuhn



Observable Behavior

UNI
FREIBURG

Recall Executions / Schedules
 An exec. is an alternating sequence of configurations and events
e Aschedule S is the sequence of events of an execution

— Possibly including node inputs

e Schedule restriction for node v:
S|v := "sequence of events seen by v"

Causal Shuffles
We say that a schedule S’ is a causal shuffle of schedule § iff

vveV: Slv=S'|v.

Observation: If S’ is a causal shuffle of S, no node/process can
distinguish between S and S'.

Distributed Systems, SS 2015 Fabian Kuhn 3



UNI
FREIBURG

Causal Order

Logical clocks are based on a causal order of the events

e |nthe order, event e should occur before event e’ if event e

provably occurs before event e’
— In that case, the clock value of e should be smaller than the one of e’

For a given schedule S:

e The distributed system cannot distinguish S from another
schedule S’ if and only if S” is a causal shuffle of S.
— causal shuffle — no node can distinguish
— no causal shuffle = some node can distinguish

Event e provably occurs before e’ if and only if
e appears before e’ in all causal shuffles of S

Distributed Systems, SS 2015 Fabian Kuhn 4



Causal Shuffles / Causal Order Example ;

FREIBURG

=
=
Schedule S
S
Vi
S
Vs :
(%]

Distributed Systems, SS 2015 Fabian Kuhn 5



Causal Shuffles / Causal Order Example

UNI
I

FREIBURG

Schedule §

S
v3 \ 55 /

Distributed Systems, SS 2015 Fabian Kuhn 6



UNI

Lamport’s Happens-Before Relation

FREIBURG

Assumption: message passing system, only send and receive events

Consider two events e and e’ occurring at nodes u and u’
— send event occurs at sending node, recv. event at receiving node
— Let’s define t and t’ be the (real) times when e and e’ occur

We know that e provably occurs before e’ if
1. The events occur at the same node and e occurs before e’

2. Event eis asend event, e’ the recv. event of the same message

3. Thereis an event e’’ for which we know that provably,
e occurs before e’’ and e’’ occurs before e’

Distributed Systems, SS 2015 Fabian Kuhn 7



Lamport’s Happens-Before Relation

UNI
I

FREIBURG

Definition: The happens-before relation =¢ on a schedule S is a
pairwise relation on the send/receive events of S and it contains

1. All pairs (e,e’) where e precedes e’ in S and e and e’ are events
of the same node/process.

2. All pairs (e, e") where e is a send event and e’ the receive event
for the same message.

3. All pairs (e, e’) where there is a third event e’’ such that
e=>se’ AN e =5¢

— Hence, we take the transitive closure of the relation defined by 1. and 2.

Distributed Systems, SS 2015 Fabian Kuhn 8



Happens-Before Relation: Example

UNI

FREIBURG

Schedule S
(2R
S
v 2
2 5
(%]

Distributed Systems, SS 2015 Fabian Kuhn




Happens-Before and Causal Shuffles

UNI

FREIBURG

Theorem: For a schedule S and two (send and/or receive) events
e and e’, the following two statements are equivalent:

a) Event e happens-before €', i.e., e =¢ €.
b) Event e precedes e’ in all causal shuffles S’ of S.

Some remarks before proving the theorem...

e Shows that the happens-before relation is exactly capturing what
we need about the causality between events

— It captures exactly what is observable about the order of events
e To prove the theorem, we show that

1. a)—Db)
2. b)—a)

Distributed Systems, SS 2015 Fabian Kuhn 10



Happens-Before and Causal Shuffles

UNI
I

FREIBURG

If e =>¢ e’, then e precedes e’ in all causal shuffles S’ of S.

Distributed Systems, SS 2015

Fabian Kuhn

11



Happens-Before and Causal Shuffles ;

UNI
FREIBURG

If e precedes e’ in all causal shuffles S’ of S, then e =¢ e'.

Proof:
e Show: e #¢ e’, there is a shuffle S' such that e’ precedes e in S

* W.l.o.g., assume that e precedes e’ in S

— Consequently, e and e’ happen at different nodes
(otherwise, the order remains the same in all causal shuffles)

e%\ 7
\/

e Events in red part can be shifted by fixed amount A

Distributed Systems, SS 2015 Fabian Kuhn 12



UNI

Happens-Before and Causal Shuffles

FREIBURG

If e precedes e’ in all causal shuffles S’ of S, then e =¢ e'.

Proof:
e Show: e #¢ e’, there is a shuffle S' such that e’ precedes e in S

%\ 7
VW

e Events in red part can be shifted by fixed amount A

— Consider some message M with send/receive events sy, 1y

o

— If sy, and ry, or only 1y, are shifted, message delay gets larger - OK
— Itis not possible to only shift sy,
— Choose A large enough to move e past e’

Distributed Systems, SS 2015 Fabian Kuhn 13



Lamport Clocks

UNI

Basic Idea:
1. Each event e gets a clock value 7(e) € N

2. If e and e’ are events at the same node and e precedes e’, then
T(e) < 1(e’)
3. If sy and 1y, are the send and receive events of some msg. M,
T(sy) < t(ry)

Observation:
* For clock values 7(e) of events e satisfy 1., 2., and 3., we have

e>¢e — 1(e)<t(e)
— because < relation (on N) is transitive

e Hence, the partial order defined by t(¢e) is a superset of =

Distributed Systems, SS 2015 Fabian Kuhn 14

FREIBURG



Lamport Clocks

UNI

Algorithm:

Each node u keeps a counter ¢,; which is initialized to 0
For any non-receive event e at node u, node u computes
c, =cy, +1; 7(e) == ¢y

For any send event s at node u, node u attaches the value of
7(s) to the message

For any receive event r at node u (with corresponding send
event s), node u computes

c, = max{c,,t(s)}+1; ©(r) =cy,

Distributed Systems, SS 2015 Fabian Kuhn

15

FREIBURG



Lamport Clocks: Example

UNI

FREIBURG

Schedule S
V4 51 T2 S4
S
v, 2
S3
U3

Distributed Systems, SS 2015 Fabian Kuhn

16




UNI

Neiger-Toueg-Welch Clocks

FREIBURG

Discussion Lamport Clocks:
e Advantage: no changes in the behavior of the underlying protocol
e Disadvantage: clocks might make huge jumps (when recv. a msg.)

Idea by Neiger, Toueg, and Welch:
e Assume nodes have some approximate knowledge of real time

— e.g., by using a clock synchronization algorithm
 Nodes increase their clock value periodically
e Combine with Lamport clock ideas to ensure safety

e When receiving a message with a time stamp which is larger than
the current local clock value, wait with processing the message.

Distributed Systems, SS 2015 Fabian Kuhn 17



Fidge-Mattern Vector Clocks

UNI

FREIBURG

e Lamport clocks give a superset of the happens-before relation
e Can we compute logical clocks to get =¢ exactly?

Vector Clocks:

e Each node u maintains an vector of clock values
— ohe value foreachnodev €V

* |nthe vector of node u assigned to some event e happening at
node u, the component x,, corresponding to v € V refers to the

number of events at node v, u knows about when e occurs

Distributed Systems, SS 2015 Fabian Kuhn 18



UNI

Vector Clocks Algorithm

FREIBURG

e All Nodes u keep a vector VC(u) with an entry for all nodes in V

— all components are initialized to 0
— component corresponding to node v: VC,,(u)

* For any non-receive event e at node u, node u computes
VC,(u) =VC,(u) +1; VC(e) :=VC(u)

 For any send event s at node u, node u attaches the value of
VC(s) to the message

e For any receive event r at node u (with corresponding send
event s), node u computes
Vv # u: VC,(u) = max{VC,(s),VC,(u)};
VC,(u) :=VC,(u) + 1;
VC(e) = VC(u)

Distributed Systems, SS 2015 Fabian Kuhn 19



Vector Clocks Example

Schedule §

UNI
I

FREIBURG

Distributed Systems, SS 2015 Fabian Kuhn 20



UNI

Vector Clocks and Happens-Before

FREIBURG

Definition: VC(e) < VC(e') :=
(Vv e V:VC,(e) < VC,(e)) A (VC(e) #VC(e"))

Theorem: Given a schedule S, for any two events e and €’,
VC(e) <VC(e') &« e> €

Distributed Systems, SS 2015 Fabian Kuhn 21



UNI

Vector Clocks and Happens-Before

FREIBURG

Definition: VC(e) < VC(e') :=
(Vv e V:VC,(e) < VC,(e)) A (VC(e) #VC(e"))

Theorem: Given a schedule S, for any two events e and €’,
VC(e) <VC(e') & e> €

Distributed Systems, SS 2015 Fabian Kuhn 22



Logical Clocks vs. Synchronizers

UNI

FREIBURG

The clock pulses (local round numbers) generated by a
synchronizer can also be seen as logical clocks

e Send events of round r get clock value 2r — 1
e Receive events of round r get clock value 27

Properties:
e superset of the happens-before relation
e requires to drastically change the protocol and its behavior

— synchronizer determines when messages can be sent

e avery heavy-weight method to get logical clock values
— requires a lot of messages

Distributed Systems, SS 2015 Fabian Kuhn 23



UNI

Application of Logical Times

FREIBURG

Replicated State Machine

 main application suggested by Lamport in his original paper

e ashared state machine where every node can issue operations
e state machine is simulated by several replicas

Solution:
e add current clock value (and issuer node ID) to every operation
e operations have to be carried out in order of clock values / IDs
e Safety:
— all replicas use same order of operations
— order of operations is a possible actual order (consistent with local views)

Liveness:
— progress is guaranteed if nodes regularly send messages to each other

Distributed Systems, SS 2015 Fabian Kuhn 24



Global States

UNI
FREIBURG

e Sometimes the nodes of a distributed system need to figure out
the global state of the system

— e.g., to find out if some property about the system state is true

e Executions/schedules which lead to the same happens-before
relation (i.e., causal shifts) cannot be distinguished by the system.

 Generally not possible to record the global state at any given
time of the execution

e Best solution: Record a global state which is consistent with all
local views

— i.e., a state which could have been tree at some time

e (Called a consistent or global snapshot of the system and based
on consistent cuts of the schedule

Distributed Systems, SS 2015 Fabian Kuhn 25



Consistent Cut

UNI

FREIBURG

Cut

Given a schedule S, a cut is a subset C of the events of S such
that for all nodes v € V, the events in C happening at v form a
prefix of the sequence of events in S|v.

Y

Vq o S 7v 6
S S
v 2
i ><{v -
S
V3 °

3 &} T4 Se g

Distributed Systems, SS 2015 Fabian Kuhn 26



UNI
FREIBURG

Consistent Cut

Consistent Cut

Given a schedule S, a consistent cut C is cut such that for all
events e € C and all events f in S, it holds that

f:>Se—)fEC

Distributed Systems, SS 2015 Fabian Kuhn 27



Consistent Cut

UNI

FREIBURG

Schedule §

Distributed Systems, SS 2015

Fabian Kuhn




