

Distributed Systems

SS 2015

Fabian Kuhn

Logical Clocks

Goal: Assign a timestamp to all events in an asynchronous message-passing system

- Allows to give the nodes some notion of time
 - which can be used by algorithms
- Logical clock values: numerical values that increase over time and which are consistent with the observable behavior of the system
- The objective here is not to do clock synchronization:
 - **Clock Synchronization:** compute logical clocks at all nodes which simulate real time and which are tightly synchronized.
 - Might be the topic of a later chapter...

Observable Behavior

Recall Executions / Schedules

- An exec. is an alternating sequence of configurations and events
- A schedule S is the sequence of events of an execution
 - Possibly including node inputs
- Schedule restriction for node v:

$$S|v :=$$
 "sequence of events seen by v "

Causal Shuffles

We say that a schedule S' is a causal shuffle of schedule S iff

$$\forall v \in V: S|v = S'|v.$$

Observation: If S' is a causal shuffle of S, no node/process can distinguish between S and S'.

Causal Order

Logical clocks are based on a causal order of the events

- In the order, event e should occur before event e' if event e provably occurs before event e'
 - $-\,$ In that case, the clock value of e should be smaller than the one of e'

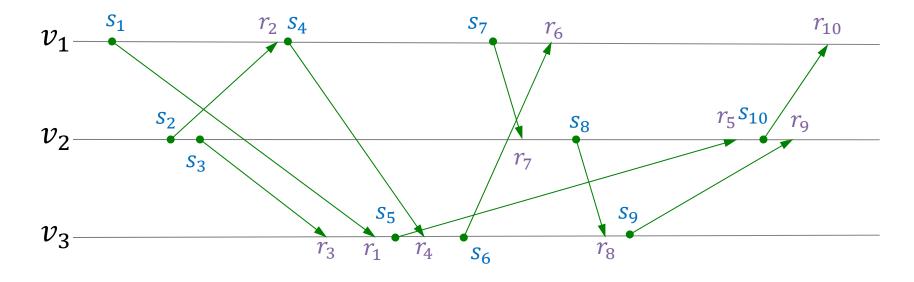
For a given schedule *S*:

- The distributed system cannot distinguish S from another schedule S' if and only if S' is a causal shuffle of S.
 - causal shuffle \implies no node can distinguish
 - no causal shuffle \implies some node can distinguish

Event e provably occurs before e' if and only if e appears before e' in all causal shuffles of S

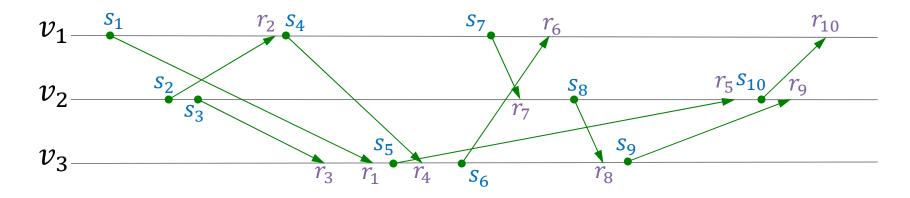
Causal Shuffles / Causal Order Example

Schedule S

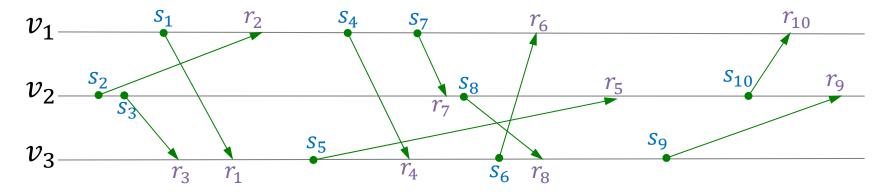


Causal Shuffles / Causal Order Example

Schedule S



Some Causal Shuffle S'



Lamport's Happens-Before Relation

Assumption: message passing system, only send and receive events

Consider two events $oldsymbol{e}$ and $oldsymbol{e}'$ occurring at nodes $oldsymbol{u}$ and $oldsymbol{u}'$

- send event occurs at sending node, recv. event at receiving node
- Let's define t and t' be the (real) times when e and e' occur

We know that e provably occurs before e' if

- 1. The events occur at the same node and e occurs before e'
- 2. Event e is a send event, e' the recv. event of the same message
- 3. There is an event e'' for which we know that provably, e occurs before e'' and e'' occurs before e'

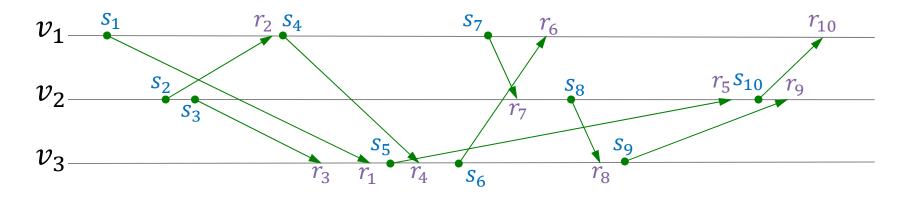
Lamport's Happens-Before Relation

Definition: The happens-before relation \Rightarrow_S on a schedule S is a pairwise relation on the send/receive events of S and it contains

- 1. All pairs (e, e') where e precedes e' in S and e and e' are events of the same node/process.
- 2. All pairs (e, e') where e is a send event and e' the receive event for the same message.
- 3. All pairs (e, e') where there is a third event e'' such that $e \Rightarrow_S e'' \land e'' \Rightarrow_S e'$
 - Hence, we take the transitive closure of the relation defined by 1. and 2.

Happens-Before Relation: Example

Schedule S



Theorem: For a schedule S and two (send and/or receive) events e and e', the following two statements are equivalent:

- a) Event e happens-before e', i.e., $e \Rightarrow_S e'$.
- b) Event e precedes e' in all causal shuffles S' of S.

Some remarks before proving the theorem...

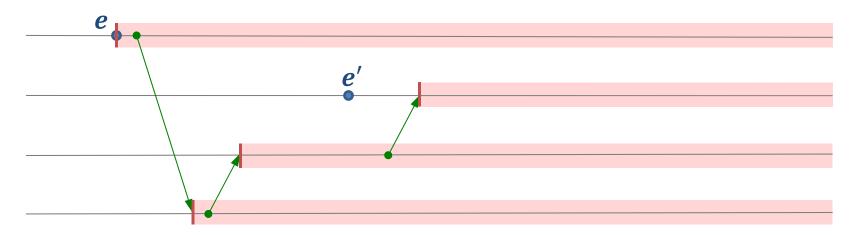
- Shows that the happens-before relation is exactly capturing what we need about the causality between events
 - It captures exactly what is observable about the order of events
- To prove the theorem, we show that
 - 1. a) \rightarrow b)
 - 2. b) \rightarrow a)

If $e \Rightarrow_S e'$, then e precedes e' in all causal shuffles S' of S.

If e precedes e' in all causal shuffles S' of S, then $e \Rightarrow_S e'$.

Proof:

- Show: $e \not\Rightarrow_S e'$, there is a shuffle S' such that e' precedes e in S
- W.l.o.g., assume that e precedes e' in S
 - Consequently, e and e' happen at different nodes (otherwise, the order remains the same in all causal shuffles)

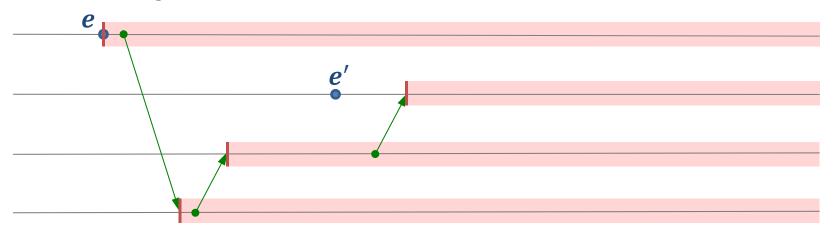


• Events in red part can be shifted by fixed amount Δ

If e precedes e' in all causal shuffles S' of S, then $e \Rightarrow_S e'$.

Proof:

• Show: $e \not\Rightarrow_S e'$, there is a shuffle S' such that e' precedes e in S



• Events in red part can be shifted by fixed amount Δ

- Consider some message M with send/receive events s_M , r_M
- If s_M and r_M or only r_M are shifted, message delay gets larger \rightarrow OK
- It is not possible to only shift s_M
- Choose Δ large enough to move e past e'

Lamport Clocks

Basic Idea:

- 1. Each event e gets a clock value $\tau(e) \in \mathbb{N}$
- 2. If e and e' are events at the same node and e precedes e', then $\tau(e) < \tau(e')$
- 3. If s_M and r_M are the send and receive events of some msg. M, $\tau(s_M) < \tau(r_M)$

Observation:

• For clock values $\tau(e)$ of events e satisfy 1., 2., and 3., we have

$$e \Rightarrow_{S} e' \rightarrow \tau(e) < \tau(e')$$

- because < relation (on ℕ) is transitive
- Hence, the partial order defined by $\tau(e)$ is a superset of \Rightarrow_s

Lamport Clocks

Algorithm:

- Each node u keeps a counter c_u which is initialized to 0
- For any non-receive event e at node u, node u computes

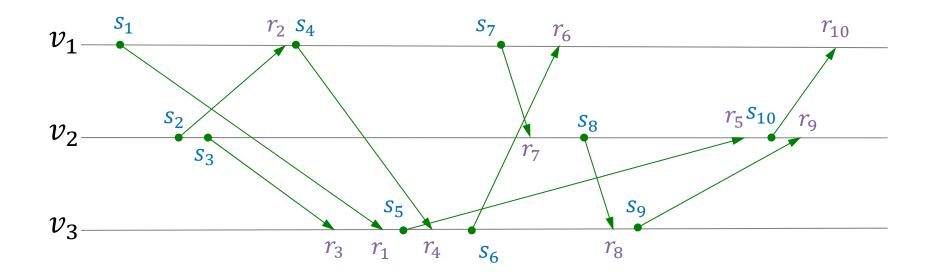
$$c_u \coloneqq c_u + 1$$
; $\tau(e) \coloneqq c_u$

- For any send event s at node u, node u attaches the value of $\tau(s)$ to the message
- For any receive event r at node u (with corresponding send event s), node u computes

$$c_u \coloneqq \max\{c_u, \tau(s)\} + 1; \ \tau(r) \coloneqq c_u$$

Lamport Clocks: Example

Schedule S



Neiger-Toueg-Welch Clocks

Discussion Lamport Clocks:

- Advantage: no changes in the behavior of the underlying protocol
- Disadvantage: clocks might make huge jumps (when recv. a msg.)

Idea by Neiger, Toueg, and Welch:

- Assume nodes have some approximate knowledge of real time
 - e.g., by using a clock synchronization algorithm
- Nodes increase their clock value periodically
- Combine with Lamport clock ideas to ensure safety
- When receiving a message with a time stamp which is larger than the current local clock value, wait with processing the message.

Fidge-Mattern Vector Clocks

- Lamport clocks give a superset of the happens-before relation
- Can we compute logical clocks to get \Rightarrow_S exactly?

Vector Clocks:

- Each node *u* maintains an vector of clock values
 - one value for each node $v \in V$
- In the vector of node u assigned to some event e happening at node u, the component x_v corresponding to $v \in V$ refers to the

number of events at node v, u knows about when e occurs

Vector Clocks Algorithm

- All Nodes u keep a vector VC(u) with an entry for all nodes in V
 - all components are initialized to 0
 - component corresponding to node $v: VC_v(u)$
- For any non-receive event e at node u, node u computes

$$VC_u(u) := VC_u(u) + 1$$
; $VC(e) := VC(u)$

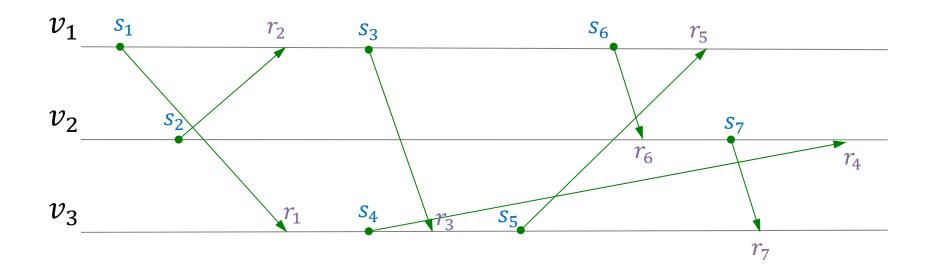
- For any send event s at node u, node u attaches the value of VC(s) to the message
- For any receive event r at node u (with corresponding send event s), node u computes

$$\forall v \neq u : VC_v(u) \coloneqq \max\{VC_v(s), VC_v(u)\};$$

 $VC_u(u) \coloneqq VC_u(u) + 1;$
 $VC(e) \coloneqq VC(u)$

Vector Clocks Example

Schedule S



Vector Clocks and Happens-Before

Definition:
$$VC(e) < VC(e') :=$$
 $(\forall v \in V: VC_v(e) \leq VC_v(e')) \land (VC(e) \neq VC(e'))$

Theorem: Given a schedule S, for any two events e and e',

$$VC(e) < VC(e') \leftrightarrow e \Rightarrow_s e'$$

Vector Clocks and Happens-Before

Definition:
$$VC(e) < VC(e') :=$$
 $(\forall v \in V: VC_v(e) \leq VC_v(e')) \land (VC(e) \neq VC(e'))$

Theorem: Given a schedule S, for any two events e and e',

$$VC(e) < VC(e') \leftrightarrow e \Rightarrow_s e'$$

Logical Clocks vs. Synchronizers

The clock pulses (local round numbers) generated by a synchronizer can also be seen as logical clocks

- Send events of round r get clock value 2r-1
- Receive events of round r get clock value 2r

Properties:

- superset of the happens-before relation
- requires to drastically change the protocol and its behavior
 - synchronizer determines when messages can be sent
- a very heavy-weight method to get logical clock values
 - requires a lot of messages

Application of Logical Times

Replicated State Machine

- main application suggested by Lamport in his original paper
- a shared state machine where every node can issue operations
- state machine is simulated by several replicas

Solution:

- add current clock value (and issuer node ID) to every operation
- operations have to be carried out in order of clock values / IDs

• Safety:

- all replicas use same order of operations
- order of operations is a possible actual order (consistent with local views)

• Liveness:

progress is guaranteed if nodes regularly send messages to each other

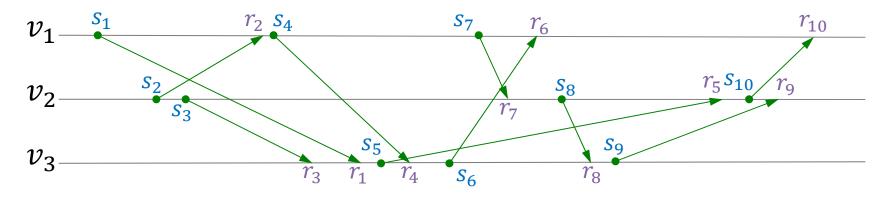
Global States

- Sometimes the nodes of a distributed system need to figure out the global state of the system
 - e.g., to find out if some property about the system state is true
- Executions/schedules which lead to the same happens-before relation (i.e., causal shifts) cannot be distinguished by the system.
- Generally not possible to record the global state at any given time of the execution
- Best solution: Record a global state which is consistent with all local views
 - i.e., a state which could have been tree at some time
- Called a consistent or global snapshot of the system and based on consistent cuts of the schedule

Consistent Cut

Cut

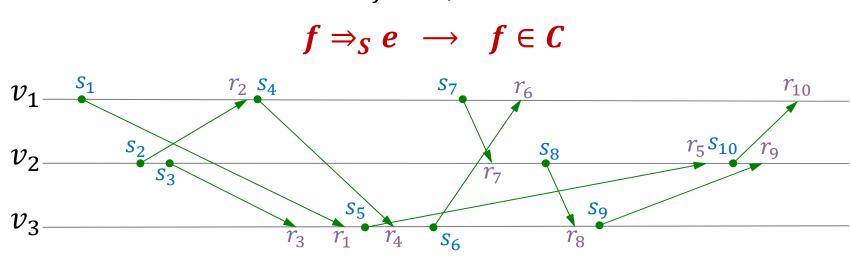
Given a schedule S, a cut is a subset C of the events of S such that for all nodes $v \in V$, the events in C happening at v form a prefix of the sequence of events in $S \mid v$.



Consistent Cut

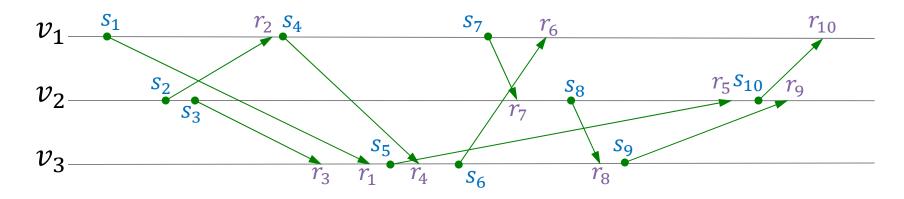
Consistent Cut

Given a schedule S, a consistent cut C is cut such that for all events $e \in C$ and all events f in S, it holds that



Consistent Cut

Schedule S



Some Causal Shuffle S'

