)

Chapter 4
Causality, Logical Time,

and Global States
Distributed Systems
SS 2015
Fabian Kuhn

UNI

FREIBURG



Causal Shuffles

UNI
I

FREIBURG

Causal Shuffles
We say that a schedule S’ is a causal shuffle of schedule § iff
vvevV: Slv=S'|v.

For a given schedule S:

e The distributed system cannot distinguish S from another
schedule S’ if and only if " is a causal shuffle of S.
— causal shuffle — no node can distinguish
— no causal shuffle = some node can distinguish

Event e provably occurs before e’ if and only if
e appears before e’ in all causal shuffles of S

Distributed Systems, SS 2015 Fabian Kuhn



Causal Shuffles / Causal Order Example

UNI
I

FREIBURG

Schedule §

S
v3 \ 55 /

Distributed Systems, SS 2015 Fabian Kuhn 3



Lamport’s Happens-Before Relation

UNI
I

FREIBURG

Definition: The happens-before relation =¢ on a schedule S is a
pairwise relation on the send/receive events of S and it contains

1. All pairs (e,e’) where e precedes e’ in S and e and e’ are events
of the same node/process.

2. All pairs (e, e") where e is a send event and e’ the receive event
for the same message.

3. All pairs (e, e’) where there is a third event e’’ such that
e=>se’ AN e =5¢

— Hence, we take the transitive closure of the relation defined by 1. and 2.

Distributed Systems, SS 2015 Fabian Kuhn 4



Happens-Before and Causal Shuffles

UNI
FREIBURG

Theorem: For a schedule S and two (send and/or receive) events
e and e’, the following two statements are equivalent:

a) Event e happens-before €', i.e., e =¢ €.

b) Event e precedes e’ in all causal shuffles S’ of S.

e Shows that the happens-before relation is exactly capturing what
we need about the causality between events

— It captures exactly what is observable about the order of events

Distributed Systems, SS 2015 Fabian Kuhn



Lamport Clocks

UNI
FREIBURG

Basic Idea:
1. Each event e gets a clock value 7(e) € N

2. If e and e’ are events at the same node and e precedes e’, then
T(e) < 1(e’)
3. If sy and 1y, are the send and receive events of some msg. M,
T(sy) < t(ry)

Observation:
* For clock values 7(e) of events e satisfying 1., 2., and 3., we have

e>¢e — 1(e)<t(e)
— because < relation (on N) is transitive

e Hence, the partial order defined by t(¢e) is a superset of =

Distributed Systems, SS 2015 Fabian Kuhn 6



Global States

UNI
FREIBURG

e Sometimes the nodes of a distributed system need to figure out
the global state of the system

— e.g., to find out if some property about the system state is true

e Executions/schedules which lead to the same happens-before
relation (i.e., causal shifts) cannot be distinguished by the system.

 Generally not possible to record the global state at any given
time of the execution

e Best solution: Record a global state which is consistent with all
local views

— i.e., a state which could have been true at some time

e (Called a consistent or global snapshot of the system and based
on consistent cuts of the schedule

Distributed Systems, SS 2015 Fabian Kuhn 7



Consistent Cut

UNI

FREIBURG

Cut

Given a schedule S, a cut is a subset C of the events of S such
that for all nodes v € V, the events in C happening at v form a
prefix of the sequence of events in S|v.

Y

Vq o S 7v 6
S S
v 2
i ><{v -
S
V3 °

3 &} T4 Se g

Distributed Systems, SS 2015 Fabian Kuhn



UNI
FREIBURG

Consistent Cut

Consistent Cut

Given a schedule S, a consistent cut C is cut such that for all
events e € C and all events f in S, it holds that

f:>Se—)fEC

Distributed Systems, SS 2015 Fabian Kuhn 9



Consistent Cut

UNI

FREIBURG

Schedule §

Distributed Systems, SS 2015

Fabian Kuhn




Consistent Cuts

UNI
I

FREIBURG

Claim: Given a schedule S, a cut C is a consistent cut if and only

if for each message M with send event s,, and receive event ry,,
if r, € C, then it also holds that s, € C.

Distributed Systems, SS 2015 Fabian Kuhn 11



Consistent Snapshot

UNI

Consistent Snapshot = Global Snapshot = Consistent Global State

e A consistent snapshot is a global system state which is
consistent with all local views.

Global System State (for schedule S)

e Avector of intermediate states (in S) of all nodes and a
description of the messages currently in transit

— Remark: If nodes keep logs of messages sent and received, the local
states contain the information about messages in transit.

Consistent Snapshot

e A global system state which is an intermediate global state for
some causal shuffle of S (consistent with all local views)

Distributed Systems, SS 2015 Fabian Kuhn 12

FREIBURG



UNI

Consistent Snapshot

FREIBURG

Claim: A global system state is a consistent snapshot if and only if it
corresponds to the node states of some consistent cut C.

Distributed Systems, SS 2015 Fabian Kuhn 13



Computing a Consistent Snapshot

UNI
I

FREIBURG

Using Logical Clocks

e Assume that each event e has a clock value 7(e) such that for
two events ¢, e’,
e=>se — 1(e) <t(e’)

e Given 1, define C(7) as the set of events e with 7(e) < 1,

Claim: VT = 0: C(7) is a consistent cut.

Remark: Not always clear how to choose T
— 1 large: not clear how long it takes until snapshot is computed
— 71 small: snapshot is “less up-to-date”

Distributed Systems, SS 2015 Fabian Kuhn 14



Chandy-Lamport Snapshot Algorithm

UNI
FREIBURG

Goals: Compute a consistent snapshot in a running system

Assumptions:

Does not require logical clocks

Channels are assumed to have FIFO property
No failures

Network is (strongly) connected

Any node can issue a hew snapshot

Remark: The FIFO property can always be guaranteed

— sender locally numbers messages on each outgoing channel

— messages with smaller numbers have to be processed before
messages with larger numbers

— works as long as messages are not lost

Distributed Systems, SS 2015 Fabian Kuhn 15



Chandy-Lamport Snapshot Algorithm

Overview:

Assume that node s initiates the snapshot computation

The times for recording the state at different nodes is
determined by sending around marker messages

When receiving the first marker message, a node records its
state and sends marker messages to all (outgoing) neighbors

On each incoming channel, the set of messages which are
received between recording the state and receiving the
marker message (on this channel) are in transit in the
snapshot.

After receiving a marker message on all incoming channels, a
nodes has finished its part of the snapshot computation

Distributed Systems, SS 2015 Fabian Kuhn 16

UNI
I

FREIBURG



Chandy-Lamport Snapshot Algorithm

UNI

FREIBURG

Initially: Node s records its state

When node u receives a marker message from node v:

if u has not recorded its state then
u records its state
set of msg. in transit from v to u is empty
u starts recording messages on all other incoming channels
else
the set of msg. in transit from v to u is the set of recorded msg.
since starting to record msg. on the channel

(Immediately) after node u records its state:
Node u sends marker msg. on all outgoing channels

— before sending any other message on those channels

Distributed Systems, SS 2015 Fabian Kuhn 17



Chandy-Lamport Snapshot Algorithm

UNI

FREIBURG

Theorem: The Chandy-Lamport algorithm computes a consistent
cut and it correctly computes the messages in transit over this cut.

Distributed Systems, SS 2015 Fabian Kuhn 18



Chandy-Lamport Snapshot Algorithm

UNI

FREIBURG

Theorem: The Chandy-Lamport algorithm computes a consistent
cut and it correctly computes the messages in transit over this cut.

Distributed Systems, SS 2015 Fabian Kuhn 19



Applications of Consistent Snapshots

UNI
I

FREIBURG

Testing Stable System Properties

e A stable property is a property which once true, remains true

e More formally: a predicate P on global configurations such that
if P is true for some configuration C, P also holds for all
configurations which can be reached from C

Testing a stable property:

e test whether property holds for a consistent snapshot

Safety: Only evaluates to true if the property holds

— the current state is reachable from every consistent snapshot state

Liveness: If the property holds, it will eventually be detected

— initiating a snapshot (using Chandy-Lamport) leads to snapshot
configuration which is reachable from the current configuration

Distributed Systems, SS 2015 Fabian Kuhn 20



UNI

Applications of Consistent Snapshots

FREIBURG

Distributed Garbage Collection

 Erase objects (e.g., variables stored at some node(s)) to which
no reference exists any more

e References can be at other nodes, in messages in transit, ...
 “No reference to object x” is a stable system property

Distributed Deadlock Detection
e Two processes/nodes wait for each other
e Deadlock is also a stable property

Distributed Termination Detection
e “Distributed computation has terminated” is a stable property
 Note, need also see messages in transit

Distributed Systems, SS 2015 Fabian Kuhn 21



