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Properties of Clock Synch. Algorithms
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e External vs. internal synchronization
— External sync: Nodes synchronize with an external clock source (UTC)
— Internal sync: Nodes synchronize to a common time

—_—

— to a leader, to an averaged time, ...

 One-shot vs. continuous synchronization
\——

— Periodic synchronization required to compensate clock drift

e Online vs. offline time information
L el

— Offline: Can reconstruct time of an event when needed

Global vs. local synchronization (explained later)

—

e Accuracy vs. convergence time, Byzantine nodes, ...
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External Clock Sources
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UTC: Coordinated Universal Time
e based on about 200 atomic clocks in about 50 national labs

— TAI International Atomic Time
— UTC = TAI + leap seconds

| e transmitted over radio signal from DCF77 (near Frankfurt)

GPS: Global Positioning System
e satellites regularly broadcast their position and time
e satellites are based on USNO time

e signals from satellites allow to exactly position a receiver in
space and time

— and to correct skew due to propagation delay
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Alternative (Silly) Clock Sources
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e AC power lines
— Use the magnetic field radiating from electric AC power lines

— AC power line oscillations are extremely stable
(drift about 10 ppm, ppm = parts per million)

— Power efficient, consumes only 58 uW

— Single communication round required to correct
phase offset after initialization

e Sunlight
— Using a light sensor to measure the length of a day
— Offline algorithm for reconstructing global S
timestamps by correlating annual solar patterns .| /
(no communication required) £ 121 W

T T T T T
Jan 200& Jul 200 Jan 2007 Jul 2007 Jan HR
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Clock Devices in Computers

e Real Time Clock (IBM PC)

e Battery backed up
e 32.768 kHz oscillator + Counter
e Get value via interrupt system

* HPET (High Precision Event Timer) i@ aa 2
. Oscillator: 10 Mhz ... 100 Mhz L
e Upto 10 ns resolution!
e Schedule threads
 Smooth media playback

e Usually inside Southbridge
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Clock Drift
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e Clock drift: deviation from the nominal rate dependent on

power supply, temperature, etc.

rate

e E.g., TinyNodes have a max. drift of 30-50 ppm (parts per million)
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This is a drift of up to
50us per second
or 0.18s per hour
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Clock Synch. in Computer Networks
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e Network Time Protocol (NTP)
* Clock sync via Internet/Network (UDP)
e Publicly available NTP Servers (UTC)
* You can also run your own server!

e Packet delay is estimated to reduce clock skew

e —
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Propagation Delay Estimation (NTP)
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« Measuring the Round-Trip Time (RTT) t -ty

ty Time accor- ts gu‘ﬁ)
e 3 == dingto B =
Request % Answer
from A 7g from B
N,
(b } tq Time accor- m
— dingto A p—

* Propagation delay 6 and clock skew © can be calculated

(b — t2) = (t5 — ) f-t, =546
t,—t) — (ts — t
getmmtemw | g

0= (t; — (t1 +6)) — (t4 — (t53 + 6)) _ (Lt —t1) + (t3 — t4)
2 2
% ; \)
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Messages Experience lJitter in the Delay
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 Problem: Jitter in the message delay
T——

Various sources of errors (deterministic and non-deterministic)

S,@«\Q 0-100 ms 0-500 ms 1-10 ms
. (- k'Q\ . .
QO ) Access Transmission

WL ‘ ——

\ ........ —— -;{\((‘\?jD
¢ t

4?@ P-IOO ms 5
‘;m?. o(g(ay

e Solution: Timestamping packets at the MAC layer
— litter in the message delay is reduced to a few clock ticks
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Messages Experience lJitter in the Delay .
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e Different radio chips use different paradigms
— Left is a CC1000 radio chip which generates an interrupt with each byte.

— Right is a CC2420 radio chip that generates a single interrupt for the packet
after the start frame delimiter is received.

i
)
Y BYTE1 BYTE 2 BYTE 3 BYTE 4 '\I SFD BYTE1 BYTE 2 BYTE 3 '\
|

H H ! !

by 4 be tz B t by 4 by ty
BYTE_TIME

16406 —

* |n wireless networks propagation

can be ignored (< 1ps for 300m).
e Still there is quite some variance
in transmission delay because of

latencies in interrupt handling |

(picture right). |
.||‘|||“||l||||lul|!!||ll|||h3.|llul| 1wl il
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Clock Synch. in Computer Networks (PTP) _
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e Precision Time Protocol (PTP) is very similar to NTP

 Commodity network adapters/routers/switches can assist in
time sync by timestamping PTP packets at the MAC layer

e Packet delay is only estimated on request
e Synchronization through one packet from server to clients!

 Some newer hardware (1G Intel cards, 82580) can timestamp
any packet at the MAC layer

e Achieving skew of about 1 microsecond
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Hardware Clock Distribution
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e Synchronous digital circuits require all components to act in sync
20 20
10 15 { 50 20 ._’_T
L 012 p ¢ 20
9 J { 20 o “
15

20 &—

 The bigger the clock skew, the longer the clock period

* The clock signal that governs this rhythm needs to be distributed
to all components such that skew and wire length is minimized

e Optimize routing, insert buffers (also to improve signal)
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Clock Synch. Tricks in Wireless Networks
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e Reference Broadcast Synchronization (RBS)
< Synchronizing atomic clocks

e Sender synchronizes a set of clocks

e Time-sync Protocol for Sensor Networks (TPSN)
< Network Time Protocol

e Estimating round trip time to sync more accurately

* Flooding Time Synchronization Protocol (FTSP)
< Precision Time Protocol
* Timestamp packets at the MAC Layer to improve accuracy @

Distributed Systems, SS 2015 Fabian Kuhn
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Best Tree for Tree-Based Clock Synch.?
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* Finding a good tree for clock synchronization is a tough problem

— Spanning tree with small (maximum or average) stretch.

e Example: Grid network, with n = m? nodes.
=

 No matter what tree you use, the max.
stretch of the spanning tree will always
be = m (just try on the grid).

* In general, finding the minimum max

stretch spanning tree is a hard problem, W @

however approximation algorithms exist.
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Clock Synchronization Tricks (GTSP)
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GTSP = Gradient Time Synchronization Protocol

e Synchronize with all neighboring nodes
— Broadcast periodic time beacons, e.g., every 30 s
— No reference node necessary

e How to synchronize clocks without
having a leader?

— Follow the node with the
fastest/slowest clock?

é
/
o

— ldea: Go to the average clock \ 0

value/rate of all neighbors
(including node itself)

— Try to adapt to clock rate differences
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Variants of Clock Synchronization Algorithms
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Tree-like Algorithms Distributed Algorithms
e.g. F_EP e.g. GTSP
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FTSP vs. GTSP: Global Skew
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 Network synchronization error (global skew)

=

— Pair-wise synchronization error between any two nodes in the network

FTSP (avg: 7.7 us)
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FTSP vs. GTSP: Local Skew
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Neighbor Synchronization error (local skew)

— Pair-wise synchronization error between neighboring nodes

e Synchronization error between two direct neighbors:
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Global vs. Local Time Synchronization ;
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e Common time is essential for many applications:

Assigning a timestamp to a globally sensed event (e.g., earthquake)

)

e Precise event localization (e.g., sensors networks, multiplayer games)

PER——

. 'I_'DMA-based MAC layer in wireless networks
N
\

e Coordination of wake-up and sleeping times (energy efficiency)

[ ] N

P it
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Theory of Clock Synchronization
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e Given a communication network
1. Each node equipped with hardware clock with drift

2. Message delays with jitter —_

[ worst-case (but constant)

e Goal: Synchronize Clocks (“Logical Clocks”)
e Both global and local synchronization!

—_—

—

Distributed Systems, SS 2015 Fabian Kuhn
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Time Must Behave! 0
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_ _ ,{',)srlw( clodk
 Time (logical clocks) should
not be allowed to stand still or jump

e Let’s be more careful (and ambitious):
e Logical clocks should always move forward

e  Sometimes faster, sometimes slower is OK.

e But there should be a minimum and a maximum speed.

e As close to correct time as possible!

Distributed Systems, SS 2015 Fabian Kuhn
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4

t
e Hardware clock H,(t) = fo h,(7)dt Clock drift p is typically
~ —4
with clock rate h,,(t) € [1 — p, 1 + small, e.g., p =~ 10" for 2
v( ) [ P ’0] cheap quartz oscillator

J

) o Logical clocks should run at
* Logical clock L, (t) which increases - |aact as fast as hardware clocks

at rate at least 1 — p and at most
[4,b) Neglect fixed part of delay,
¢ Message delays € [0 1] normalize jitter to 1

* Goal: a distributed synchronization @ = 152/6/
algorithm to update the logical clock 6 —
according to hardware clockand "%y S = Gimeis 150
messages from neighbors \

3,
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Synchronization Algorithm A ™%
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Task: How to update logical clocks based on msg. from neighbors
Idea: Minimize skew to the fastest neighbor

Algorithm A™#X

e Set logical clock to the maximum clock value received from any
neighbor (if larger than local logical clock value)

* If recv. value > previously forwarded value, forward immediately

e atleast forward local logical clock value once every T time steps

— send out local logical clock value if hardware clock proceeds byQ -p)1
since the last time the clock value was sent — %

Remark: Algorithm allows f = o

. ?
(clock values can jump to larger values)
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Theorem: Alg. A™3* guarantees a global clock skew of at most
(1+p)-D+2p-T.
S L -

(global clock skew = max. diff. between two clock values, D: diameter) D'\r

(4 AaTetD tl < ’J(,\f%
L\\\\“\ ~

} - Y L DT
N——— o \w—'—’c_\

L0 3L W% () 1
2L W) + Q") |
2Ll +0-0(E4e 4 £ )2 | ()4 (19T
El “b" { -D -1
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Synchronization Algorithm A ™%
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Theorem: Alg. A™3* guarantees a global clock skew of at most

(14+p)-D+2p-T.

(global clock skew = max. diff. between two clock values, D: diameter)

o Ly ) 2 Ly (£ =D-T) + (T L/, o

M‘)()!)J
M({\ v \NM\X L (+) e

WD~ (s pOomairgT
Ly L )z Ht-D-T) (i T2 Rm-(

i L= = Flutbe (1§ —= d_yie) <1
M) € M4-D-T) & L+ (DAT)
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Synchronization Algorithm A™M3%
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Global Skew can be 2_ o —O
e path of length D, all message delays are ;

> ":\ =S S < 7 \‘.\ ¢ \ > '\:\
OO0 56— —8—08
rate: 1+p 1+<1—%>p 1+<1—%>p 1—(1—%),0 1-p

* skew between any 2 neighbors grows to 1 before detecting any skew

Local Skew can also be D...
e first all messages have delay 1 = skew D between ends of path

e then, messages become very fast (delay = 0)

Fastest New time is D + x New timeis D +x | ckew D!

Hardware Clock N
\ Timeis D + x Timeis D + x Timeis D +N7’_7H
&—H—— " 5—8
Clock value: D + x D+x—1 x+1
xS
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Problems
* Global and local skew can both be O(D)

* Clock values can jump (i.e., f = o0)

Can we do better?

. 1+
e We can make clocks continues, any f > 2p - ﬁ works

— Intuition: If a node u knows of a larger clock value, it sets its logical clock

rate t- h,, (t) to catch up = see exercises!

e Global skew cannot be improved = see next slides!

e Local skew can be improved, however
— straightforward, simple ideas don’t work [Locher et al., 2006]
— somewhat surprisingly, O(1) local skew is not possible [Fan et al., 2004]

———
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Global Skew Lower Bound
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Theorem: The global skew guarantee of any clock synchronization
algorithm is at least D /2 (where D is the diameter of the network).

How to Enforce Clock Skew?

e Make messages fast in one direction and slow in the other dir.

e This allows to “hide” a constant amount of skew per edge

2!,3

/R

7

|=

| S |
I EERNG_- ¢ 27 AL
i
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Global Skew Lower Bound

UNI
I

FREIBURG

Theorem: The global skew guarantee of any clock synchronization
algorithm is at least D /2 (where D is the diameter of the network).

Proof Idea:

e Assume that all hardware clocks run at rate 1 (no drift)
 Create two indistihguishable executions (causal shuffels):

1. Initially: going from left two right, clock skew — 1/, between neighbors
Message delays: left to right: 1, right to left: 0

_1 _ _3 — _5 —
x4 x /21 x—1 . x /9 { X2 4 x=>/p 4 x-3
©O——@ O——O@— 0 ———0—F—=0

T 0 0 0 0 0 0

S

SQuo( 4&,%3.% ~(: e CV. q& \000\( \kw\l .{:+\z
(oca(
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Global Skew Lower Bound
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Theorem: The global skew guarantee of any clock synchronization
algorithm is at least D /2 (where D is the diameter of the network).

Proof Idea:

e Create two indistinguishable executions (causal shuffels):

1. Initially: going from left two right, clock skew — 1/, between neighbors
Message delays: left to right: 1, right to left: 0
X 1x—1/2_1> x—1_1>x—3/2_1> x—2_1>x—m5/2_1> x—3

0 0 0 0 0 0
2. Initially: going from left two right, clock skew + 1/, between neighbors

Message delays: left to right: 0, right to left: 1
1 3
x g Xt /2L x+1 o x+ /ZL x+2 x+5/ZL x+3

O O O —» N O —> N O
“— VY — Y e— Y e— Y e— Y

1 1 1 1 1 1
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Global Skew Lower Bound
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Theorem: The global skew guarantee of any clock synchronization
algorithm is at least D /2 (where D is the diameter of the network).

Proof Idea:

e Create two indistinguishable executions (causal shuffels):

1 _ 3 _
xlx—/zlxl x—/21x2

1-04_—’04_—’04_—1’0._—’0._—1’04_0
0 0 0 0 0 0

x x+1/ x+1 x+3/ X+ 2 x+°/ x+3
07" 720, 0, 2.0, 0 2 0

2. 0———"0—F 0T 0= 0o—F="0—>=0
1 1 1 1 1 1

* Ifinexecutionl, L, (t) — L, (t) =S,
=
in execution 2, we have L, (t) — L, (t) =S + D.

—_——
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Local Skew: Overview of Results
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verybody‘s expectation,
before 2004 (,,solved”)
Blocking jAII natural algorithms }
Lower bound of logD / loglogDd algorithm | [Locher et al., DISC 2006]
[Fan & Lynch, PODC 2004]

Dynamic Networks
[Kuhn et al., SPAA 2009]

Kappa algorithm LDynamic Networks J
[Lenzen et a|" FOCS 2008] J[KUhn et al., PODC 2010]

Tight lower bound
[Lenzen et al., PODC 2009]
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Local Skew: Lower Bound
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Claim: For a path of length ¢:

e Given a an execution of length T where all hardware clock rates
are 1 and all message delays are 1/,.

e Assume at the end of the execution, the clock skew between the
endpoints of the path is s

e We can create an indistinguishable execution in which at the end,

the clock skew is s + £/5.

Ly(t) = x hy=1+p  L,@) =x+%/,

h,

e S
\': ~

/ |

1

L ® hy=1  Ly@®

hy,
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Local Skew: Lower Bound
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hy =1 Ly(t) = x hy=1+p L, =x+"i/,

\‘ /1 \ ¥ Higher
fi — [ >
(¢0 = D) ~ \ I\
1

h,, W(t) hy, =1 . Ly (1)

e Add {)0/2 skew in {JO/ZP time, messing with clock rates and messages

e Afterwards: Continue execution for {)0/4(3_1) time (all h, = 1)

— Skew reduces by at most {)0/4 —> at least {)0/4 skew remains

—> Consider a subpath of length ¥, = ¢ - p/z(ﬁ_l) with at least £1/4 skew
> Add 1/, skew in fl/zp = {)0/4(3_1) time = at least 3/, - #; skew in subpath

* Repeat this trick (+%,-%,+%,-%,...) lOgZ(B—l)/ D times
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Local Skew: Lower Bound

UNI

FREIBURG

|
to length £, = D, skew = 0

play with hw clock rates / message delays

|
y 2, length £, = D, skew > £, /2
Ime
4(p-1) all hw clock rates = 1, all message delays = 1/,

|
length|?y = D, skew = £,/4

subpath of length #; = {"0 skew ?,/4
{1 (ﬁ 1)’

time >0 N play with hw cIock rates / message delays

Iength £, skew > /4 + {’1/2
4(f-1) < allhw clock rates = 1, all message delays = 1/,

time

T

length £, skew >|#,/4 + ¢, /4

subpath of length £, = ¢; - ,skew = £,/4 4+, /4

_P
2(B-1)
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Local Skew: Lower Bound
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Theorem: For every clock synch. algorithm, the skew between
neighboring nodes can be Q(log(ﬁ_l)/p D).

Proof Idea:

Given an exec. where for the last fi/4(3_1) = {)i*l/zp time units all
h, = 1 and all msg. delays are 1/, and witha subpath of length #;

with skew > i - fi/4 (at end of exec.)

p
2(f-1)

t; . . . . P P
Use last ‘+1/2p time units to increase skewto > 1 - ‘+1/4 + ‘+1/2

Pick subpath of length £;,; = ¢; - with skew = ¢ - €i+1/4

Add {)”1/4([),_1) time units with all h, = 1 and msg. delays 1

New skew isstill > (i + 1) - {)"*1/4
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Local Skew: Lower Bound
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Theorem: For every clock synch. algorithm, the skew between

neighboring nodes can be Q(log(ﬁ_l)/p D).

Proof Idea:

1

e Foralli=0,1,2,...
e Create subpath of length £; with skew > i - fi/4

’B():D,

p

T )

:D.<

 Number of iterations: @(log(ﬁ_l)/p D)

Distributed Systems, SS 2015
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Local Skew: Upper Bound
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* Up to small constants, the Q(log(ﬁ_l)/p D) lower bound can be
matched with clock rates € [1, £] (highly non-trivial!)

e We get the following picture [Lenzen et al., PODC 2009]:

max rate 8 | 1+p | 1+0(p) @ 2

local skew O(log D) @(loglf2 D) @(logl/p D) @(logl/p D)

We can have both ... because too large
smooth and accurate clock rates will amplify
clocks! the clock drift p.

. 1
 In practice, we usually have s 10* > D.

In other words, our initial intuition of a constant local skew was
not entirely wrong! ©
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