

Chapter 5 Clock Synchronization

Distributed Systems

SS 2015

Fabian Kuhn

Properties of Clock Synch. Algorithms

- External vs. internal synchronization
 - External sync: Nodes synchronize with an external clock source (UTC)
 - Internal sync: Nodes synchronize to a common time
 - to a leader, to an averaged time, ...
- One-shot vs. continuous synchronization
 - Periodic synchronization required to compensate clock drift
- Online vs. offline time information
 - Offline: Can reconstruct time of an event when needed
- Global vs. local synchronization (explained later)
- Accuracy vs. convergence time, Byzantine nodes, ...

External Clock Sources

UTC: Coordinated Universal Time

- based on about 200 atomic clocks in about 50 national labs
 - TAI: International Atomic Time
 - UTC = TAI + leap seconds
- transmitted over radio signal from DCF77 (near Frankfurt)

GPS: Global Positioning System

- satellites regularly broadcast their position and time
- satellites are based on USNO time
- signals from satellites allow to exactly position a receiver in space and time
 - and to correct skew due to propagation delay

Alternative (Silly) Clock Sources

AC power lines

- Use the magnetic field radiating from electric AC power lines
- AC power line oscillations are extremely stable (drift about 10 ppm, ppm = parts per million)
- Power efficient, consumes only 58 μW
- Single communication round required to correct phase offset after initialization

Sunlight

- Using a light sensor to measure the length of a day
- Offline algorithm for reconstructing global timestamps by correlating annual solar patterns (no communication required)

Clock Devices in Computers

- Real Time Clock (IBM PC)
 - Battery backed up
 - 32.768 kHz oscillator + Counter
 - Get value via interrupt system

- HPET (High Precision Event Timer)
 - Oscillator: 10 Mhz ... 100 Mhz
 - Up to 10 ns resolution!
 - Schedule threads
 - Smooth media playback
 - Usually inside Southbridge

Clock Drift

 Clock drift: deviation from the nominal rate dependent on power supply, temperature, etc.

• E.g., TinyNodes have a max. drift of 30-50 ppm (parts per million)

This is a drift of up to 50µs per second or 0.18s per hour

Clock Synch. in Computer Networks

Network Time Protocol (NTP)

Packet delay is estimated to reduce clock skew

Propagation Delay Estimation (NTP)

Measuring the Round-Trip Time (RTT)

ullet Propagation delay δ and clock skew Θ can be calculated

$$S = \frac{(t_4 - t_1) - (t_3 - t_2)}{2}$$

$$E_4 - t_3 = S + \theta$$

$$E_4 - t_3 = S - \theta$$

$$E_6 = \frac{(t_2 - (t_1 + \delta)) - (t_4 - (t_3 + \delta))}{2} = \frac{(t_2 - t_1) + (t_3 - t_4)}{2}$$

Messages Experience Jitter in the Delay

Problem: Jitter in the message delay
 Various sources of errors (deterministic and non-deterministic)

- Solution: Timestamping packets at the MAC layer
 - → Jitter in the message delay is reduced to a few clock ticks

Messages Experience Jitter in the Delay

- Different radio chips use different paradigms
 - Left is a CC1000 radio chip which generates an interrupt with each byte.
 - Right is a CC2420 radio chip that generates a single interrupt for the packet after the start frame delimiter is received.

- In wireless networks propagation can be ignored ($< 1 \mu s$ for 300m).
- Still there is quite some variance in transmission delay because of latencies in interrupt handling (picture right).

Clock Synch. in Computer Networks (PTP)

- Precision Time Protocol (PTP) is very similar to NTP
- Commodity network adapters/routers/switches can assist in time sync by timestamping PTP packets at the MAC layer
- Packet delay is only estimated on request
- Synchronization through one packet from server to clients!
- Some newer hardware (1G Intel cards, 82580) can timestamp any packet at the MAC layer
- Achieving skew of about 1 microsecond

Hardware Clock Distribution

Synchronous digital circuits require all components to act in sync

- The bigger the clock skew, the longer the clock period
- The clock signal that governs this rhythm needs to be distributed to all components such that skew and wire length is minimized
- Optimize routing, insert buffers (also to improve signal)

Clock Synch. Tricks in Wireless Networks

- Reference Broadcast Synchronization (RBS)
 ⇒ Synchronizing atomic clocks
 - Sender synchronizes a set of clocks

Estimating round trip time to sync more accurately

Timestamp packets at the MAC Layer to improve accuracy

Best Tree for Tree-Based Clock Synch.?

- Finding a good tree for clock synchronization is a tough problem
 - Spanning tree with small (maximum or average) stretch.

• Example: Grid network, with $n=m^2$ nodes.

• No matter what tree you use, the max. stretch of the spanning tree will always be $\geq m$ (just try on the grid).

 In general, finding the minimum max stretch spanning tree is a hard problem, however approximation algorithms exist.

Clock Synchronization Tricks (GTSP)

GTSP = Gradient Time Synchronization Protocol

- Synchronize with all neighboring nodes
 - Broadcast periodic time beacons, e.g., every 30 s
 - No reference node necessary
- How to synchronize clocks without having a leader?
 - Follow the node with the fastest/slowest clock?
 - Idea: Go to the average clock value/rate of all neighbors (including node itself)
 - Try to adapt to clock rate differences

Variants of Clock Synchronization Algorithms

Tree-like Algorithms e.g. FTSP

Distributed Algorithms e.g. GTSP

All nodes consistently average errors to *all* neighbors

FTSP vs. GTSP: Global Skew

- Network synchronization error (global skew)
 - Pair-wise synchronization error between any two nodes in the network

FTSP vs. GTSP: Local Skew

- Neighbor Synchronization error (local skew)
 - Pair-wise synchronization error between neighboring nodes
- Synchronization error between two direct neighbors:

Global vs. Local Time Synchronization

Common time is essential for many applications:

• Precise event localization (e.g., sensors networks, multiplayer games)

Coordination of wake-up and sleeping times (energy efficiency)

Theory of Clock Synchronization

- Given a communication network
 - 1. Each node equipped with hardware clock with drift
 - 2. Message delays with jitter -

worst-case (but constant)

- Goal: Synchronize Clocks ("Logical Clocks")
 - Both global and local synchronization!

Time Must Behave!

 Time (logical clocks) should not be allowed to stand still or jump

• Let's be more careful (and ambitious):

1-3

Logical clocks should always move forward

1+5

- Sometimes faster, sometimes slower is OK.
- But there should be a minimum and a maximum speed.
- As close to correct time as possible!

Formal Model

• Hardware clock $H_v(t) = \int_0^t h_v(\tau) d\tau$ with clock rate $h_v(t) \in [1 - \rho, 1 + \rho]$

Clock drift ρ is typically small, e.g., $\rho \approx 10^{-4}$ for a cheap quartz oscillator

• Logical clock $L_v(t)$ which increases at rate at least $1-\rho$ and at most β

Logical clocks should run at least as fast as hardware clocks

[a,b]

Neglect fixed part of delay, normalize jitter to 1

• Message delays $\in [0,1]$

 Goal: a distributed synchronization algorithm to update the logical clock according to hardware clock and messages from neighbors

Task: How to update logical clocks based on msg. from neighbors

Idea: Minimize skew to the fastest neighbor

Algorithm A^{max}

- Set logical clock to the maximum clock value received from any neighbor (if larger than local logical clock value)
- If recv. value > previously forwarded value, forward immediately
- at least forward local logical clock value once every T time steps
 - send out local logical clock value if hardware clock proceeds by (1ρ) since the last time the clock value was sent

Remark: Algorithm allows $\beta = \infty$ (clock values can jump to larger values)

Theorem: Alg. \mathcal{A}^{\max} guarantees a global clock skew of at most

$$(1+\rho)\cdot D+2\rho\cdot T.$$

(global clock skew = max. diff. between two clock values, D: diameter)

Theorem: Alg. \mathcal{A}^{\max} guarantees a global clock skew of at most $(1+\rho)\cdot D + 2\rho\cdot T$.

(global clock skew = max. diff. between two clock values, D: diameter)

$$\begin{aligned} \forall_{uv}: L_{v}(t) &\geq L_{u}(t-D-T) + (1-g)T \\ M(t) &\coloneqq \max_{u} L_{u}(t) \\ &\searrow L_{v}(t) \geq M(t-D-T) + (1-g)T \geq M(t) - (1+g)(D+T) + (1+g)T \\ &\searrow L_{v}(t) \geq M(t-D-T) + (1-g)T \geq M(t) - (1+g)(D+T) + (1+g)T \\ &\bowtie L_{v}(t) = M(t) - \delta_{d} L_{u}(t) \leq (1+g) + \delta_{d} L_{u}(t) \leq (1+g)(D+T) \end{aligned}$$

Global Skew can be **D**

• path of length D, all message delays are $\underline{1}$

skew between any 2 neighbors grows to 1 before detecting any skew

Local Skew can also be D...

- first all messages have delay $1 \implies$ skew D between ends of path
- then, messages become very fast (delay ≈ 0)

Problems

- Global and local skew can both be $\Theta(D)$
- Clock values can jump (i.e., $\beta = \infty$)

Can we do better?

- We can make clocks continues, any $\beta > 2\rho \cdot \frac{1+\rho}{1-\rho}$ works
 - Intuition: If a node u knows of a larger clock value, it sets its logical clock rate to $\frac{\beta}{1+\rho}$ $h_u(t)$ to catch up \Longrightarrow see exercises!
- Global skew cannot be improved ⇒ see next slides!
- Local skew can be improved, however
 - straightforward, simple ideas don't work [Locher et al., 2006]
 - somewhat surprisingly, O(1) local skew is not possible [Fan et al., 2004]

Theorem: The global skew guarantee of any clock synchronization algorithm is at least D/2 (where D is the diameter of the network).

How to Enforce Clock Skew?

- Make messages fast in one direction and slow in the other dir.
- This allows to "hide" a constant amount of skew per edge

Theorem: The global skew guarantee of any clock synchronization algorithm is at least D/2 (where D is the diameter of the network).

Proof Idea:

- Assume that all hardware clocks run at rate 1 (no drift)
- Create two indistinguishable executions (causal shuffels):
 - 1. Initially: going from left two right, clock skew $-\frac{1}{2}$ between neighbors Message delays: left to right: 1, right to left: 0

Theorem: The global skew guarantee of any clock synchronization algorithm is at least D/2 (where D is the diameter of the network).

Proof Idea:

- Create two indistinguishable executions (causal shuffels):
 - 1. Initially: going from left two right, clock skew $-\frac{1}{2}$ between neighbors Message delays: left to right: 1, right to left: 0

2. Initially: going from left two right, clock skew $+ \frac{1}{2}$ between neighbors Message delays: left to right: 0, right to left: 1

Theorem: The global skew guarantee of any clock synchronization algorithm is at least D/2 (where D is the diameter of the network).

Proof Idea:

Create two indistinguishable executions (causal shuffels):

1.
$$x - \frac{1}{2} \xrightarrow{x - 1/2} \xrightarrow{x - 1} \xrightarrow{x - 1} \xrightarrow{x - 3/2} \xrightarrow{x - 2} \xrightarrow{x - 5/2} \xrightarrow{x - 3}$$

2.
$$x + \frac{1}{2} \xrightarrow{0} x + \frac{1}{2} \xrightarrow{0} x + \frac{1}{2} \xrightarrow{0} x + \frac{3}{2} \xrightarrow{0} x + \frac{2}{1} \xrightarrow{0} x + \frac{5}{2} \xrightarrow{0} x + \frac{3}{2} \xrightarrow{0} x$$

• If in execution 1, $L_{v_R}(t) - L_{v_L}(t) = S$, in execution 2, we have $L_{v_R}(t) - L_{v_L}(t) = S + D$.

Local Skew: Overview of Results

Claim: For a path of length ℓ :

- Given a an execution of length T where all hardware clock rates are 1 and all message delays are 1/2.
- Assume at the end of the execution, the clock skew between the endpoints of the path is s
- We can create an indistinguishable execution in which at the end, the clock skew is $s + \ell/2$.

- Add $\frac{\ell_0}{2}$ skew in $\frac{\ell_0}{2\rho}$ time, messing with clock rates and messages
- Afterwards: Continue execution for ${\ell_0}/{4(\beta-1)}$ time (all $h_x=1$)
 - \rightarrow Skew reduces by at most $\ell_0/4 \rightarrow$ at least $\ell_0/4$ skew remains
 - \rightarrow Consider a subpath of length $\ell_1 = \ell_0 \cdot {}^{\rho}/_{2(\beta-1)}$ with at least ${}^{\ell_1}/_4$ skew
 - \rightarrow Add $\ell_1/2$ skew in $\ell_1/2\rho = \ell_0/4(\beta-1)$ time \rightarrow at least $3/4 \cdot \ell_1$ skew in subpath
- Repeat this trick (+½,-¼,+½,-¼,...) $\log_{2(\beta-1)/\epsilon} D$ times

$$\lim \frac{\ell_0}{2\rho} \qquad \lim \frac{\ell_0}{\operatorname{play with hw clock rates}} / \operatorname{message delays}$$

$$\lim \frac{\ell_0}{4(\beta-1)} \qquad \lim \frac{\ell_0}{\operatorname{length}} \ell_0 = D, \operatorname{skew} \geq \ell_0/2$$

$$\lim \frac{\ell_0}{4(\beta-1)} \qquad \lim \frac{\ell_0}{2\rho} \qquad \lim \frac{\ell_0}{2\rho} / \operatorname{length} \ell_0 = D, \operatorname{skew} \geq \ell_0/4$$

$$\lim \frac{\ell_1}{2\rho} \qquad \lim \frac{\ell_0}{4(\beta-1)} \qquad \lim \frac{\ell_0}{4(\beta-1)} / \operatorname{skew} \geq \ell_1/4 + \ell_1/2$$

$$\lim \frac{\ell_0}{4(\beta-1)} \qquad \lim \frac{\ell_0}{4(\beta-1)} \qquad \lim \frac{\ell_0}{4(\beta-1)} / \operatorname{skew} \geq \ell_1/4 + \ell_1/4$$

$$\lim \frac{\ell_0}{4(\beta-1)} \qquad \lim \frac{\ell_0}{4(\beta-1)} / \operatorname{skew} \geq \ell_1/4 + \ell_1/4$$

$$\lim \frac{\ell_0}{4(\beta-1)} \qquad \lim \frac{\ell_0}{4(\beta-1)} / \operatorname{skew} \geq \ell_1/4 + \ell_1/4$$

$$\lim \frac{\ell_0}{4(\beta-1)} / \operatorname{skew} \geq \ell_1/4 + \ell_1/4$$

Theorem: For every clock synch. algorithm, the skew between neighboring nodes can be $\Omega(\log_{(\beta-1)/\rho} D)$.

Proof Idea:

- Given an exec. where for the last ${}^{\ell_i}/_{4(\beta-1)}={}^{\ell_{i+1}}/_{2\rho}$ time units all $h_x=1$ and all msg. delays are ${}^1/_2$ and with a subpath of length ℓ_i with skew $\geq i \cdot {}^{\ell_i}/_4$ (at end of exec.)
- Pick subpath of length $\ell_{i+1} = \ell_i \cdot \frac{\rho}{2(\beta-1)}$ with skew $\geq i \cdot \ell_{i+1}/4$
- Use last $\ell_{i+1}/2\rho$ time units to increase skew to $\geq i \cdot \ell_{i+1}/4 + \ell_{i+1}/2$
- Add $\ell_{i+1}/\ell_{4(\beta-1)}$ time units with all $h_\chi=1$ and msg. delays 1
- New skew is still $\geq (i+1) \cdot \ell_{i+1}/4$

Theorem: For every clock synch. algorithm, the skew between neighboring nodes can be $\Omega(\log_{(\beta-1)/\rho} D)$.

Proof Idea:

- For all i = 0, 1, 2, ...
- Create subpath of length ℓ_i with skew $\geq i \cdot \ell_i / \ell_4$

$$\ell_0 = D$$
, $\ell_i = \ell_{i-1} \cdot \frac{\rho}{2(\beta - 1)} = D \cdot \left(\frac{\rho}{2(\beta - 1)}\right)^t$

• Number of iterations: $\Theta(\log_{(\beta-1)/\rho} D)$

Local Skew: Upper Bound

- Up to small constants, the $\Omega(\log_{(\beta-1)/\rho} D)$ lower bound can be matched with clock rates $\in [1, \beta]$ (highly non-trivial!)
- We get the following picture [Lenzen et al., PODC 2009]:

max rate β	$1+\rho$	$1 + \Theta(\rho)$	$1+\sqrt{\rho}$	2	large
local skew	8	$\Theta(\log D)$	$\Theta(\log_{1/\rho}D)$	$\Theta(\log_{1/\rho} D)$	$\Theta(\log_{1/ ho}D)$

We can have both smooth and accurate clocks!

... because too large clock rates will amplify the clock drift ρ .

• In practice, we usually have $\frac{1}{\rho} \approx 10^4 > D$. In other words, our initial intuition of a constant local skew was not entirely wrong! \odot