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Properties of Clock Synch. Algorithms 
• External vs. internal synchronization 

– External sync: Nodes synchronize with an external clock source (UTC) 
– Internal sync: Nodes synchronize to a common time 

– to a leader, to an averaged time, ... 
 

• One-shot vs. continuous synchronization 
– Periodic synchronization required to compensate clock drift 

 

• Online vs. offline time information 
– Offline: Can reconstruct time of an event when needed 

 

• Global vs. local synchronization (explained later) 
 

• Accuracy vs. convergence time, Byzantine nodes, … 
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External Clock Sources 
UTC: Coordinated Universal Time 
• based on about 200 atomic clocks in about 50 national labs 

– TAI: International Atomic Time 
– UTC = TAI + leap seconds 

• transmitted over radio signal from DCF77 (near Frankfurt) 
 

GPS: Global Positioning System 
• satellites regularly broadcast their position and time 
• satellites are based on USNO time 
• signals from satellites allow to exactly position a receiver in 

space and time 
– and to correct skew due to propagation delay 
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Alternative (Silly) Clock Sources 
 

• AC power lines 
– Use the magnetic field radiating from electric AC power lines 
– AC power line oscillations are extremely stable  

(drift about 10 ppm, ppm = parts per million) 
– Power efficient, consumes only 58 μW 
– Single communication round required to correct 

phase offset after initialization 
 

• Sunlight 
– Using a light sensor to measure the length of a day 
– Offline algorithm for reconstructing global  

timestamps by correlating annual solar patterns  
(no communication required) 
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• Real Time Clock (IBM PC) 
• Battery backed up 
• 32.768 kHz oscillator + Counter 
• Get value via interrupt system 

 
• HPET (High Precision Event Timer) 

• Oscillator: 10 Mhz … 100 Mhz 
• Up to 10 ns resolution! 
• Schedule threads 
• Smooth media playback 
• Usually inside Southbridge 

Clock Devices in Computers 
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• Clock drift: deviation from the nominal rate dependent on 
power supply, temperature, etc. 
 
 

 
• E.g., TinyNodes have a max. drift of 30-50 ppm (parts per million) 

This is a drift of up to 
50μs per second  
or 0.18s per hour 

t 

rate 

1 
1 + 𝜌 

1 − 𝜌 

Clock Drift 
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Clock Synch. in Computer Networks 
• Network Time Protocol (NTP) 
• Clock sync via Internet/Network (UDP) 
• Publicly available NTP Servers (UTC) 
• You can also run your own server! 

 
 
 
 
 

 
 

• Packet delay is estimated to reduce clock skew 
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• Measuring the Round-Trip Time (RTT) 
 
 
 
 
 
• Propagation delay 𝛿 and clock skew Θ can be calculated 

 
𝛿 =

𝑡4 − 𝑡1 − (𝑡3 − 𝑡2)
2

 

Θ =
𝑡2 − (𝑡1 + 𝛿) − (𝑡4 − (𝑡3 + 𝛿))

2
=

𝑡2 − 𝑡1 + (𝑡3 − 𝑡4)
2

 

B 

A 
Time accor- 
ding to A 

Request  
from A  

Answer  
from B  

Time accor- 
ding to B 

𝑡2 

𝑡1 𝑡4 

𝑡3 

Propagation Delay Estimation (NTP) 
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Reception Callback 

• Problem: Jitter in the message delay 
Various sources of errors (deterministic and non-deterministic) 
 
 

 
 
 
 
 

• Solution: Timestamping packets at the MAC layer 
→ Jitter in the message delay is reduced to a few clock ticks 
 

Messages Experience Jitter in the Delay 

0-100 ms 0-500 ms 1-10 ms 

0-100 ms 
t 

SendCmd Access Transmission 
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Messages Experience Jitter in the Delay 
• Different radio chips use different paradigms 

– Left is a CC1000 radio chip which generates an interrupt with each byte. 
– Right is a CC2420 radio chip that generates a single interrupt for the packet 

after the start frame delimiter is received. 
 
 
 

 
• In wireless networks propagation 

can be ignored (< 1µs for 300m). 
 

• Still there is quite some variance 
in transmission delay because of 
latencies in interrupt handling  
(picture right). 
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• Precision Time Protocol (PTP) is very similar to NTP 
 

• Commodity network adapters/routers/switches can assist in 
time sync by  timestamping PTP packets at the MAC layer 
 

• Packet delay is only estimated on request 
 

• Synchronization through one packet from server to clients! 
 

• Some newer hardware (1G Intel cards, 82580) can timestamp 
any packet at the MAC layer 
 

• Achieving skew of about 1 microsecond 

Clock Synch. in Computer Networks (PTP) 
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• Synchronous digital circuits require all components to act in sync 
 
 
 
 
 
 
 

• The bigger the clock skew, the longer the clock period 
• The clock signal that governs this rhythm needs to be distributed 

to all components such that skew and wire length is minimized 
• Optimize routing, insert buffers (also to improve signal) 

 

Hardware Clock Distribution 
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Clock Synch. Tricks in Wireless Networks 
 

• Reference Broadcast Synchronization (RBS) 
     ⟺ Synchronizing atomic clocks 
• Sender synchronizes a set of clocks 

 
 
 

• Time-sync Protocol for Sensor Networks (TPSN) 
     ⟺ Network Time Protocol  
• Estimating round trip time to sync more accurately 

 
 

• Flooding Time Synchronization Protocol (FTSP) 
     ⟺ Precision Time Protocol 
• Timestamp packets at the MAC Layer to improve accuracy 
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Best Tree for Tree-Based Clock Synch.? 
• Finding a good tree for clock synchronization is a tough problem 

– Spanning tree with small (maximum or average) stretch. 
 

• Example: Grid network, with 𝑛 = 𝑚2 nodes. 
 

• No matter what tree you use, the max. 
stretch of the spanning tree will always 
be ≥ 𝑚 (just try on the grid). 
 

• In general, finding the minimum max 
stretch spanning tree is a hard problem,  
however approximation algorithms exist. 

1 2 3 4 5 

6 7 8 9 10 

11 12 13 14 15 

16 17 18 19 20 

21 22 23 24 25 
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GTSP = Gradient Time Synchronization Protocol 
• Synchronize with all neighboring nodes 

− Broadcast periodic time beacons, e.g., every 30 s 
− No reference node necessary 
 

• How to synchronize clocks without 
having a leader? 
− Follow the node with the  

fastest/slowest clock? 
− Idea: Go to the average clock 

value/rate of all neighbors 
(including node itself) 

− Try to adapt to clock rate differences 
 

 
 

Clock Synchronization Tricks (GTSP) 
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Variants of Clock Synchronization Algorithms 

 
 Tree-like Algorithms  Distributed Algorithms 
 e.g. FTSP    e.g. GTSP 

 
 
 
 
 
 
 
 
 
 

Can get bad 
local skew 

All nodes consistently 
average errors to all 
neigbhors 
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FTSP vs. GTSP: Global Skew 
 

• Network synchronization error (global skew) 
– Pair-wise synchronization error between any two nodes in the network 

 

FTSP (avg: 7.7 μs) GTSP (avg: 14.0 μs) 
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FTSP vs. GTSP: Local Skew 
 

• Neighbor Synchronization error (local skew) 
– Pair-wise synchronization error between neighboring nodes 

 

• Synchronization error between two direct neighbors: 
 FTSP (avg: 15.0 μs) GTSP (avg: 2.8 μs) 
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Global vs. Local Time Synchronization 
• Common time is essential for many applications: 

 

• Assigning a timestamp to a globally sensed event (e.g., earthquake) 

 
• Precise event localization (e.g., sensors networks, multiplayer games) 

 
• TDMA-based MAC layer in wireless networks 

 
 

 
• Coordination of wake-up and sleeping times (energy efficiency) 
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• Given a communication network 
1. Each node equipped with hardware clock with drift 
2. Message delays with jitter 
 
 
 
 
 
 
 
 

• Goal: Synchronize Clocks (“Logical Clocks”) 
• Both global and local synchronization! 

 

worst-case (but constant) 

Theory of Clock Synchronization 
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Time Must Behave! 
• Time (logical clocks) should 

not be allowed to stand still or jump 
 
 
 
 
 
 
 

• Let’s be more careful (and ambitious): 
• Logical clocks should always move forward  

• Sometimes faster, sometimes slower is OK.  
• But there should be a minimum and a maximum speed. 
• As close to correct time as possible! 
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Formal Model 

• Hardware clock 𝐻𝑣 𝑡 = ∫ ℎ𝑣 𝜏 𝑑𝜏
𝑡
0  

with clock rate ℎ𝑣 𝑡 ∈ [1 − 𝜌, 1 + 𝜌] 
 

• Logical clock 𝐿𝑣 𝑡  which increases 
at rate at least 1 − 𝜌 and at most 𝛽 
 

• Message delays ∈ 0,1  
 

• Goal: a distributed synchronization  
algorithm to update the logical clock 
according to hardware clock and 
messages from neighbors 

Time is 150 

Lv? 

Hv 

Time is 140 

Time is 152 

Clock drift 𝜌 is typically 
small, e.g., ρ ≈ 10−4 for a 

cheap quartz oscillator 

Logical clocks should run at 
least as fast as hardware clocks 

Neglect fixed part of delay, 
normalize jitter to 1 
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Synchronization Algorithm 𝒜max 
Task: How to update logical clocks based on msg. from neighbors 
 

Idea: Minimize skew to the fastest neighbor 
 

Algorithm 𝓐𝐦𝐦𝐦 
• Set logical clock to the maximum clock value received from any 

neighbor (if larger than local logical clock value) 
• If recv. value > previously forwarded value, forward immediately 
• at least forward local logical clock value once every 𝑇 time steps 

– send out local logical clock value if hardware clock proceeds by 1 − 𝜌 
since the last time the clock value was sent 

 

Remark: Algorithm allows 𝛽 = ∞ 
                (clock values can jump to larger values) 
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Synchronization Algorithm 𝒜max 
Theorem: Alg. 𝒜max guarantees a global clock skew of at most 

1 + 𝜌 ⋅ 𝐷 + 2𝜌 ⋅ 𝑇. 
(global clock skew = max. diff. between two clock values, 𝐷: diameter) 



Distributed Systems, SS 2015 Fabian Kuhn 25 

Synchronization Algorithm 𝒜max 
Global Skew can be 𝑫 
• path of length 𝐷, all message delays are 1 

 
 
 

• skew between any 2 neighbors grows to 1 before detecting any skew 
 

Local Skew can also be 𝑫... 
• first all messages have delay 1  ⟹  skew 𝐷 between ends of path 
• then, messages become very fast (delay ≈ 0) 
 

Time is 𝐷 + 𝑥 Time is 𝐷 + 𝑥 
… 

Clock value: 𝐷 + 𝑥 𝐷 + 𝑥 − 1 𝑥 + 1 𝑥 

Time is 𝐷 + 𝑥 

New time is 𝐷 + 𝑥 New time is 𝐷 + 𝑥 skew 𝐷! Fastest 
Hardware Clock 

… 

rate:   1 + 𝜌 1 + 1 −
4
𝐷 𝜌 1 − 1 −

2
𝐷 𝜌 1 + 1 −

2
𝐷 𝜌 1 − 𝜌 
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Synchronization Algorithm 𝒜max 
Problems 
• Global and local skew can both be Θ 𝐷  
• Clock values can jump (i.e., 𝛽 = ∞) 

 

Can we do better? 

• We can make clocks continues, any 𝛽 > 2𝜌 ⋅ 1+𝜌
1−𝜌

 works 

– Intuition: If a node 𝑢 knows of a larger clock value, it sets its logical clock 
rate to 𝛽

1+𝜌
⋅ ℎ𝑢 𝑡  to catch up ⟹ see exercises! 

• Global skew cannot be improved ⟹ see next slides! 
• Local skew can be improved, however 

– straightforward, simple ideas don’t work [Locher et al., 2006] 
– somewhat surprisingly, 𝑂 1  local skew is not possible [Fan et al., 2004] 
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Global Skew Lower Bound 
Theorem: The global skew guarantee of any clock synchronization 
algorithm is at least 𝐷 2⁄  (where 𝐷 is the diameter of the network). 
 

How to Enforce Clock Skew? 
• Make messages fast in one direction and slow in the other dir. 
• This allows to “hide” a constant amount of skew per edge 

2 3 4 5 6 7 

2 3 4 5 6 7 

2 3 4 5 6 7 

2 3 4 5 6 7 

2 3 4 5 6 7 

2 3 4 5 6 7 

𝑢 

𝑣 
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Global Skew Lower Bound 
Theorem: The global skew guarantee of any clock synchronization 
algorithm is at least 𝐷 2⁄  (where 𝐷 is the diameter of the network). 
 

Proof Idea: 
• Assume that all hardware clocks run at rate 1 (no drift) 
• Create two indistinguishable executions (causal shuffels): 

1. Initially: going from left two right, clock skew −1
2⁄  between neighbors 

Message delays: left to right: 1, right to left: 0 
 
 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

𝒙 𝒙 − 𝟏
𝟐�  𝒙 − 𝟏 𝒙 − 𝟑

𝟐�  𝒙 − 𝟐 𝒙 − 𝟓
𝟐�  𝒙 − 𝟑 
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Global Skew Lower Bound 
Theorem: The global skew guarantee of any clock synchronization 
algorithm is at least 𝐷 2⁄  (where 𝐷 is the diameter of the network). 
 

Proof Idea: 
• Create two indistinguishable executions (causal shuffels): 

1. Initially: going from left two right, clock skew −1
2⁄  between neighbors 

Message delays: left to right: 1, right to left: 0 
 
 

2. Initially: going from left two right, clock skew + 1
2⁄  between neighbors 

Message delays: left to right: 0, right to left: 1 
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Global Skew Lower Bound 
Theorem: The global skew guarantee of any clock synchronization 
algorithm is at least 𝐷 2⁄  (where 𝐷 is the diameter of the network). 
 

Proof Idea: 
• Create two indistinguishable executions (causal shuffels): 

 
1.   

 
 

2.   

 
 

• If in execution 1, 𝐿𝑣𝑅 𝑡 − 𝐿𝑣𝐿 𝑡 = 𝑆,  
in execution 2, we have 𝐿𝑣𝑅 𝑡 − 𝐿𝑣𝐿 𝑡 = 𝑆 + 𝐷. 
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Local Skew: Overview of Results 
 
 
 
 

 
 
 
 
 
 
 

 
 

𝟏  𝐥𝐥𝐥𝑫  𝑫  𝑫 … 
        

Everybody‘s expectation, 
before 2004 („solved“) 

Lower bound of logD / loglogD 
[Fan & Lynch, PODC 2004] 

All natural algorithms  
[Locher et al., DISC 2006] 

Blocking 
algorithm 

Kappa algorithm 
[Lenzen et al., FOCS 2008] 

Tight lower bound 
[Lenzen et al., PODC 2009] 

Dynamic Networks 
[Kuhn et al., SPAA 2009] 

Dynamic Networks 
[Kuhn et al., PODC 2010] 
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Local Skew: Lower Bound 
Claim: For a path of length ℓ: 
• Given a an execution of length 𝑇 where all hardware clock rates 

are 1 and all message delays are 1 2⁄ . 
• Assume at the end of the execution, the clock skew between the 

endpoints of the path is 𝑠 
• We can create an indistinguishable execution in which at the end, 

the clock skew is 𝑠 + ℓ
2⁄ . 

 

Higher 
clock 
rates 

ℓ 

ℎ𝑣 = 1 

ℎ𝑤 = 1 𝐿𝑤(𝑡) 

𝐿𝑣 𝑡 = 𝑥 

ℎ𝑤 = 1 𝐿𝑤(𝑡) 

𝐿𝑣 𝑡 = 𝑥 + ℓ
2�  ℎ𝑣 = 1 + 𝜌 
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Local Skew: Lower Bound 

• Add ℓ0 2�  skew in ℓ0 2𝜌�  time, messing with clock rates and messages 

• Afterwards: Continue execution for ℓ0 4(𝛽−1)�   time (all ℎ𝑥 = 1) 

 Skew reduces by at most ℓ0 4�   at least ℓ0 4�  skew remains 

 Consider a subpath of length ℓ1 = ℓ0 ⋅
𝜌
2 𝛽−1�  with at least ℓ1 4�  skew 

 Add ℓ1 2�  skew in ℓ1 2𝜌� = ℓ0
4(𝛽−1)�  time  at least 3 4⁄ ⋅ ℓ1 skew in subpath 

• Repeat this trick (+½,-¼,+½,-¼,…) log2(β−1)
𝜖�
𝐷 times 

Higher 
clock 
rates 

ℓ𝒊 
(ℓ𝟎 = 𝑫) 

ℎ𝑣 = 1 

ℎ𝑤 = 1 𝐿𝑤(𝑡) 

𝐿𝑣 𝑡 = 𝑥 

ℎ𝑤 = 1 𝐿𝑤(𝑡) 

𝐿𝑣 𝑡 = 𝑥 + ℓ𝑖
2�  ℎ𝑣 = 1 + 𝜌 
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Local Skew: Lower Bound 

length ℓ0 = 𝐷, skew ≥ 0 time ℓ0
2𝜌

 

length ℓ0 = 𝐷, skew ≥ ℓ0 2⁄  
time ℓ0

4(𝛽−1)
 

play with hw clock rates / message delays 

all hw clock rates = 𝟏, all message delays = 𝟏
𝟐⁄  

length ℓ0 = 𝐷, skew ≥ ℓ0 4⁄  

subpath of length ℓ1 = ℓ0 ⋅
𝜌

2 𝛽−1
, skew ≥ ℓ1 4⁄  

length ℓ1, skew ≥ ℓ1 4⁄ + ℓ1/2 

play with hw clock rates / message delays time ℓ1
2𝜌

 

time ℓ0
4(𝛽−1)

 
all hw clock rates = 𝟏, all message delays = 𝟏

𝟐⁄  

length ℓ1, skew ≥ ℓ1 4⁄ + ℓ1/4 

subpath of length ℓ2 = ℓ1 ⋅
𝜌

2 𝛽−1
, skew ≥ ℓ2 4⁄ + ℓ2/4 
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Local Skew: Lower Bound 
Theorem: For every clock synch. algorithm, the skew between 
neighboring nodes can be 𝛀 𝐥𝐥𝐥(𝜷−𝟏)/𝝆 𝑫 . 
 

Proof Idea: 

• Given an exec. where for the last ℓ𝑖 4(𝛽−1)� = ℓ𝑖+1
2𝜌�  time units all 

ℎ𝑥 = 1 and all msg. delays are 1 2⁄  and witha subpath of length ℓ𝑖 
with skew ≥ 𝑖 ⋅ ℓ𝑖 4�  (at end of exec.) 

• Pick subpath of length ℓ𝑖+1 = ℓ𝑖 ⋅
𝜌

2(𝛽−1)
 with skew ≥ 𝑖 ⋅ ℓ𝑖+1 4�  

• Use last ℓ𝑖+1 2𝜌�  time units to increase skew to ≥ 𝑖 ⋅ ℓ𝑖+1 4� + ℓ𝑖+1
2�  

• Add ℓ𝑖+1 4(𝛽−1)�  time units with all ℎ𝑥 = 1 and msg. delays 1 

• New skew is still ≥ (𝑖 + 1) ⋅ ℓ𝑖+1 4�  
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Local Skew: Lower Bound 
Theorem: For every clock synch. algorithm, the skew between 
neighboring nodes can be 𝛀 𝐥𝐥𝐥(𝜷−𝟏)/𝝆 𝑫 . 
 

Proof Idea: 
• For all 𝑖 = 0, 1, 2, … 

• Create subpath of length ℓ𝑖 with skew ≥ 𝑖 ⋅ ℓ𝑖 4�  
 

ℓ0 = 𝐷, ℓ𝑖 = ℓ𝑖−1 ⋅
𝜌

2 𝛽 − 1
= 𝐷 ⋅

𝜌
2 𝛽 − 1

𝑖

 

 

• Number of iterations: Θ log(𝛽−1)/𝜌 𝐷  
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Local Skew: Upper Bound 
• Up to small constants, the Ω log(𝛽−1)/𝜌 𝐷  lower bound can be 

matched with clock rates ∈ [1,𝛽] (highly non-trivial!) 
 

• We get the following picture [Lenzen et al., PODC 2009]: 
 
 
 
 
 
 

• In practice, we usually have 1
𝜌
≈ 104 > 𝐷.  

In other words, our initial intuition of a constant local skew was 
not entirely wrong!  

 

max rate 𝛽 1 + 𝜌 1 + Θ 𝜌  1 + 𝜌 2 large 
local skew ∞ Θ(log𝐷) Θ log1/𝜌 𝐷  Θ log1/𝜌 𝐷  Θ log1/𝜌 𝐷  

... because too large 
clock rates will amplify 
the clock drift 𝜌.  

We can have both 
smooth and accurate 
clocks! 
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