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From Single-Core to Multicore Computers
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Desktop Computer:
Single core l@
cpu \

mm

Bus

memory
shared memory }
Server architecture:
The Shared Mempry
Multiprocessor {SMP)
All cores on
the same chi
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Sequential Computation
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process (thread/node)
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Concurrent Computation
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multiple
processes
(threads)

(shared memory

=@~

object

.
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Distributed Systems, SS 2015

Fabian Kuhn



Fault Tolerance & Asynchrony
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processes

e Why fault-tolerance?

— Even if processes do not die, there are “near-death experiences”

e Sudden unpredictable delays:
— Cache misses (short)
— Page faults (long)

— Scheduling quantum used up (really long)
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Consensus
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Each thread/process has a private input

&3
&
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Consensus

UNI

FREIBURG

The processes communicate
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Consensus

UNI
I

FREIBURG

They agree on some process’s input

S
& B
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Consensus More Formally
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Setting:
e n processes/threads/nodes vy, v,, ..., Uy

e Each process has aninput x{,x,,...,x,, €D
— - =
e Each (non-failing) process computes an output y4,v>, ..., vy, € D

Agreement:
The outputs of all non-failing processes are equal.

Validity:
If all inputs are equal to x, all outputs are equal to x.

Termination:
All non-failing processes terminate after a finite number of steps.
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Remarks
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e Validity might sometimes depend on the (failure) model

Two Generals:

e The two generals (coordinated attack) problem is a variant of
2-node, binary consensus.

e Model: Communication is synchronous, messages can be lost

* Validity: If no messages are lost, and both nodes have the same
input x, x needs to be the output

 We have seen that the problem cannot be solved in this setting.
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Consensus is Important
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* With consensus, you can implement anything you can imagine...

e Examples:
— With consensus you can decide on a leader,
— implement mutual exclusion,
— or solve the two generals problem
— and much more...

e We will see that in some models, consensus is possible, in some
other models, it is not

e The goal is to learn whether for a given model consensus is
possible or not ... and prove it!
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Consensus #1: Shared Memory
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e n > 1 processors 7\,
e Shared memory is memory that may be accessed S
simultaneously by multiple threads/processes. K

e Processors can atomically read or write (not both) a shgred
memory cell

W, Vo Vo -.. V ‘
Protocol: é s “ E

"= There is a designated memory cell c.
= |nitially c is in a special state “?”
= Processor 1 writes its value { into ¢, then decides on 1.
" Aprocessorj # 1 reads c until j reads something
else than “?”, and then decides on that.

 Problems with this approach?
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Unexpected Delay
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Heterogeneous Architectures

|
FRE:BURG

UNI

/i

17

Pentium
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Fault-Tolerance
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Computability ;
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e Definition of computability

— Computable usually means Turing-computable,
i.e., the given problem can be solved using a
Turing machine

— Strong mathematical model!

e Shared-memory computability

— Model of asynchronous concurrent computation g' B @
— Computable means it is wait-free computable on
a multiprocessor

— Wait-free...?

shared memory
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Consensus #2: Wait-free Shared Memory
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* n>1processors

e Processors can atomically read or write (not both) a shared
memory cell

e Processors might crash (stop... or become very slow...)

Wait-free implementation:
e Every process completes in a finite number of steps

e Implies that locks cannot be used = The thread holding the lock
may crash and no other thread can make progress

e We assume that we have wait-free atomic registers
(i.e., reads and/or writes to same register do not overlap)
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A Wait-Free Algorithm
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e Thereis acell ¢, initially ¢ =“?”
e Every processor i does the following:

decide r;

D —

e Is this algorithm correct...?

Distributed Systems, SS 2015 Fabian Kuhn
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An Execution
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Execution Tree weik
Initial state
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Impossibility
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N
There is no wait-free consensus algorithm

using read/write atomic registers.

Anm.
Beorem) TS/TA

O o
° °
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Proof
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Make it simple

— There are only two processes A and B and the input is binary
T ——— -

e Assume that thereis aﬂotocol

In this protocol, either A or B “moves” in each step

* Moving means
— Register read
— Register write

<

A movey \B moves

Distributed Systems, SS 2015 Fabian Kuhn
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Execution Tree
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bivalent

by

Initial state

- critical

univalent with
the next step)

L) valeat

DN

univalent

/ O O-valent 1-valent O

Distributed Systems, SS 2015

N Final states (decision values)
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Bivalent vs. Univalent
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 Wait-free computation is a tree
e Bivalent system states

— Qutcome is not fixed

e Univalent states
— Outcome is fixed
— Maybe not “known” yet
— 1-valent and 0-valent states

Claim:

e Some initial system state is bivalent
g

e Hence, the outcome is not always fixed from the start

Distributed Systems, SS 2015 Fabian Kuhn
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Proof of Claim: A 0-Valent Initial State
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o All executions lead to the decision O

Similarly, the
decision is always
1 if both threads

start with 1!

e Solo executions also lead to the decision O

g © 3

4
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Proof of Claim: Indistinguishable Situations _
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e Sijtuations are indistinguishable to red process

— The outcome must be the same
[ﬁcision is 0!

J

The decision is 0! |

[

Similarly, the decision is 1 if
the red thread crashed!
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Proof of Claim: A Bivalent Initial State
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@ D;)ecision: 0 J [ Decision: 1 j @%
\=
- < { Decision: 0 ] Decision: 1 gD

DeC|5|on 1°?
, DeC|5|on 0?

This state i
bivalent!

IS
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Critical States
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A bivalent state is critical if all
e Starting from a bivalent initial state children states are univalent

\ J FRE:BURG

 The protocol must reach a critical state

e —————
— Otherwise we could stay bivalent forever

— And the protocol is not wait-free

S .
S D O

e The goal is now to show that the
system can always remain bivalent

Distributed Systems, SS 2015 Fabian Kuhn 29



Reaching a Critical State
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 The system can remain bivalent forever if there is always an
action that prevents the system from reaching a critical state:

B moves

[ 1-valent ]

4 [ O-valent J
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Model Dependency
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e So far, everything was memory-independent!

e True for
— Registers
— Message-passing
— Carrier pigeons
— Any kind of asynchronous computation

Steps with Shared Read/Write Registers
 Processes/Threads A re“j{
we

— Perform reads and/or writes

——— —_—

— To the same or different registers

— Possible interactions?

Distributed Systems, SS 2015 Fabian Kuhn
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Possible Interactions
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A reads x
xm y.read() | x.write(Q) |y-write()
x.read() ? ? ? ?
y.read() ? ? ? ?
x.write() ? ? ? ?
Z-Write_() ? ? ? ?

B writes y

Distributed Systems, SS 2015 Fabian Kuhn 32



Reading Registers
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pivalaat

&>
R
<)

A runs solo, decides

A runs solo, decides /

States look the same to A

Distributed Systems, SS 2015 Fabian Kuhn
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Possible Interactions
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X.read() | y-read() | x.write(Q) |y-write()
x.read() no no no no
y.read() no no no no
x.write() no no —?_ ?
y.write() no no ? ?

Distributed Systems, SS 2015 Fabian Kuhn 34
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Writing Distinct Registers
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A writes y B writes x

B writes x
h——

A writes y

States look the same to A and B ~
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Possible Interactions

/ \ _g s
X.read() | y-read() | x.write() |y-write()
x.read() no no no no
y.read() no no no no
x.write() no no ? no
y.write() no no no ?
Distributed Systems, SS 2015 Fabian Kuhn 36
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Writing Same Registers

X X

£\
a e ad
Y A writes x /0 1 @

s
A runs solo, decides _
A writes x

[A runs solo, decides

/

States look the same to A
—

(a4
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This Concludes the Proof ©
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TP+ Tishe, Ly Patiores

X.read() | y-read() | x.write(Q) |y-write()
x.read() no no no no
y.read() no no no no
x.write() no no no no
y.write() no no no no
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Consensus in Distributed Systems?
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e We want to build a concurrent FIFO Queue
with multiple dequeuers

P
-
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A Consensus Protocol
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e Assume we have such a FIFO queue and a 2-element array

2-element array

FIFO Queue with red and

black balls
e e

J N

Coveted red ball Dreaded black ball

Distributed Systems, SS 2015 Fabian Kuhn 40



A Consensus Protocol
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e Process i writes its value into the array at position i

Distributed Systems, SS 2015 Fabian Kuhn
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A Consensus Protocol
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e Then, the thread takes the next element from the queue

U
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A Consensus Protocol
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-
| got the coveted red ball,
so | will decide my value

.

| got the dreaded black ball,

so | will decide the other’s
value from the array

Distributed Systems, SS 2015 Fabian Kuhn
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A Consensus Protocol
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Why does this work?

* If one thread gets the red ball, then the other gets the black ball

e Winner can take its own value

e Loser can find winner’s value in array
— Because processes write array before dequeuing from queue

Implication
 We can solve 2-thread consensus using only

— A two-dequeuer queue

— Atomic registers

Distributed Systems, SS 2015 Fabian Kuhn 44
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Implications

e Assume there exists
— A gueue implementation from atomic registers

* Given
— A consensus protocol from queue and registers

e Substitution yields
— A wait-free consensus protocol from atomic registers

Corollary

e |tisimpossible to implement a two-dequeuer wait-free FIFO
queue with read/write shared memory.

e This was a proof by reduction;
important beyond NP-completeness...
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Consensus #3: Read-Modify-Write Memory

e
o
>

zI.IJ
=1

n > 1 processes (processors/nodes/threads)

Wait-free implementation

Processors can read and write a shared memory cell in one
atomic step: the value written can depend on the value read

E—

We call this a read-modify-write (RMW) register

Can we solve consensus using a RMW register...?
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Consensus Protocol Using a RMW Register
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e Thereis acell ¢, initially ¢ =“?”

==l
e Every processor i does the following m
RMW(c) .

1T

(c == *?”) |[khen
write(c, Vv;)f decide v;

else
decide;;\\:i§§>§\E
atomit step
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Discussion
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e Protocol works correctly
— One processor accesses c first; this processor will determine decision

e Protocol is wait-free
e RMW is quite a strong primitive

— Can we achieve the same with a weaker primitive?

Distributed Systems, SS 2015 Fabian Kuhn
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Read-Modify-Write More Formally
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e Method takes 2 arguments:

— Cellc
F-

— Functio

e Method call:

— Replaces value x of cell ¢ with f(x)

— Returns value x of cell ¢

Distributed Systems, SS 2015

Fabian Kuhn
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Read-Modify-Write
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public class RMW {
private int value; Return prior value

public synchroni;gd»iﬁiziﬁgz;unction ) {
int prior = this.value; -
this.value = f(this.value);
return priorj_—;"t:::ffgi:
+

Apply function
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Read-Modify-Write: Read
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public class RMW {
private int value;

public synchronized int read() {
int prior = this.value;
this.value = this.value;
return prior;

}

Identify function
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Read-Modify-Write: Test&Set

UNI

FREIBURG

public class RMW {
private int value;

public synchronized int TASQO {
int prior = this.value;

this.value 1;
return prior;
by

Constant function

Distributed Systems, SS 2015 Fabian Kuhn
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Read-Modify-Write: Fetch&Inc
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public class RMW {
private int value;

public synchronized int FAIQO {
int prior = this.value;
this.value = this.value+l;
return prior;

}

Increment function
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Read-Modify-Write: Fetch&Add
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public class RMW {
private int value;

public synchronized int FAA(int x) {

int prior

this.value; -

this.value

this.value+x;

return prior;

}

Distributed Systems, SS 2015

Addition function
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Read-Modify-Write: Swap
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public class RMW {
private int value;

public synchronized int swap(int x) {
int prior = this.value;
this.value X

return prior;

;

}

Set to x

Distributed Systems, SS 2015 Fabian Kuhn
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Read-Modify-Write: Compare&Swap
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public class RMW {
private int value;

public synchronized int CAS(Cint old, int new) {
int prior = this.value; S

[if(this-value == old)
this.value = new;
return prior;

1 Te—_ “Complex” function

Distributed Systems, SS 2015 Fabian Kuhn
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Definition of Consensus Number

N
 Anobject has consensus numbern ~ TLkS

— If it can be used Q/U\) (ﬁ/&ﬂl M

o Together with atomic read/write registers
— To implement n-process consensus, but not (n + 1)-process consensus

FREIBURG

e Example: Atomic read/write registers have consensus number 1
— Works with 1 process

— We have shown impossibility with 2
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Consensus Number Theorem
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Beorem) / /

If you can implement X from Y and
X has consensus number ¢, then
Y has consensus number at least c.

E—

—

e Consensus numbers are a useful way of measuring
synchronization power

e An alternative formulation:
— If X has consensus number ¢
— And Y has consensus numberd < ¢

— Then there is no way to construct a
wait-free implementation of X by Y

 This theorem will be very useful

— Unforeseen practical implications!

Distributed Systems, SS 2015 Fabian Kuhn
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Theorem @
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« ARMW is non-trivial if there exists a value v such that v # f(v)
— Test&Set, Fetch&Inc, Fetch&Add, Swap, Compare&Swap, general RMW...

/—/ﬁ /

— But not read

Beorem)
Any non-trivial RMW object has

consensus number at least 2.

* Implies no wait-free implementation of RMW registers from
read/write registers

e Hardware RMW instructions not just a convenience
?

Distributed Systems, SS 2015 Fabian Kuhn
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Proof

UNI
FREIBURG

e A two-process consensus protocol using any non-trivial RMW
object:

public class RMWConsensusFor2 implements Consensus{

private RMW r;]>lnitialized tov r

public Object decide() {
int 1 = Thread.mylndex(); ko
i FCr. W) == V)?—Amlflrst.\/

return this-announce[i];!= v
= Yes, return

else

m—
return|this.announce[1-i]; y Input
} V) FV

No, re

¥ other’s inpytwav (&)
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Interfering RMW
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e Let F be a set of functions such that for all fj_andﬂ_either

— They commute: fi(f;(x))=f(f;(x)) f(x) = new value of cell
— They overwrite: fi(f;(x))=f;(x) (not return value of f)

Claim: Any such set of RMW objects has
consensus number exactly 2

/

Examples:

e (Qverwrite

— Test&Set , Swap
— T
e Commute
— Fetch&lInc, Fetch&Add
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Proof
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e There are three threads,ﬁ_,_ B_,and C
e Consider a critical state c:

A about to apply f, B about to apply f;
a—— = = —_—=__>
0-valent : 1-valent
N\
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Proof: Maybe the Functions Commute
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B applies fB§ : A applies f,
C runs solo.~" "-...C runs solo

e,
......
......
.

0-valent 1-valent
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Proof: Maybe the Functions Commute

| These states look the same to C

A applies f, B applies f;

B applies fB§ : A applies f,

C runs solo-* “...Cruns solo
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Proof: Maybe the Functions Overwrite
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: A applies f,

-

“...Cruns solo

° °
............
...........
..........
.o,

1-valent

Distributed Systems, SS 2015 Fabian Kuhn 65



Proof: Maybe the Functions Overwrite
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| These states look the same to C

A applies f,

B applies fg

C runs solo: :A applies f,

“...Cruns solo
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Impact
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e Many early machines used these “weak” RMW instructions
— Test&Set (IBM 360)
— Fetch&Add (NYU Ultracomputer)
— Swap

e We now understand their limitations

Distributed Systems, SS 2015 Fabian Kuhn
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Consensus with Compare & Swap
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public class RMWConsensus implements Consensus {
private RMW r; L

————————nitialized to -1

public Object decide() {
int i = Thread.mylndex(); Am | first?

= r'C]W
itg = -Dr
return [this.announce[i];~ ' eturn

return this-announcel!!;!
} No, return

other’s input
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The Consensus Hierarchy
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Test&Set
e Fetch&Inc

e Fetch&Add
Swap

ead/Write
Registers

e CAS
e LL/SC

arS. W
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