
7. Introduction Page 1

Chapter 7: Introduction

Distributed Applications - Motivation

Why do we want to make our applications distributed?

Applications are inherently distributed.

A distributed system is more reliable.

A distributed system performs better.

A distributed system scales better.

Only paradigm to support use cases like Google, Facebook and Amazon!

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

7. Introduction Page 2

Practical Concerns of Distributed Systems

“Easier to go from theory to practice than vice versa” [Fabian Kuhn]
but

significant gap between fundamental results and practical applications

high complexity: nondeterminism, failures

large design space

many tradeoffs: practical concerns vs. theoretical worst cases

Everybody wants to write applications as if they were centralized,
yet reap the benefits of distribution (very similar story to parallelism)
but

ineffecient design (think RPC)

leaky abstractions

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

7. Introduction Page 3

Practical Concerns of Distributed Systems

“Easier to go from theory to practice than vice versa” [Fabian Kuhn]
but

significant gap between fundamental results and practical applications

high complexity: nondeterminism, failures

large design space

many tradeoffs: practical concerns vs. theoretical worst cases

Everybody wants to write applications as if they were centralized,
yet reap the benefits of distribution (very similar story to parallelism)
but

ineffecient design (think RPC)

leaky abstractions

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

7. Introduction Page 4

Example: Transparency in Distributed Databases

Typical CS approach: hide complexity by adding abstractions

Which of these types of transparency are likely to hold?

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

7. Introduction Page 5

Fallacies of distributed computing

1 The network is reliable.

2 Latency is zero.

3 Bandwidth is infinite.

4 The network is secure.

5 Topology doesn’t change.

6 There is one administrator.

7 Transport cost is zero.

8 The network is homogeneous.

established by Peter Deutsch, Bill Joy, Tom Lyon and James Gosling.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

7. Introduction Page 6

Considerations for distributed applications

On a conceptual level, we face a tradeoff:

transparency and abstraction

understandable models and algorithms

vs

fundamental limitations

efficiency

In practice, there are a number of useful rules

Don’t write distributed applications from scratch

Don’t invent your own algorithms (unless you know exactly what you are
doing)

Don’t trust frameworks and tools blindly

Cannot beat fundamental science (FLP, CAP)
Make very specific tradeoffs and promises
Contain bugs in design and implementation

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

7. Introduction Page 7

Considerations for distributed applications

On a conceptual level, we face a tradeoff:

transparency and abstraction

understandable models and algorithms

vs

fundamental limitations

efficiency

In practice, there are a number of useful rules

Don’t write distributed applications from scratch

Don’t invent your own algorithms (unless you know exactly what you are
doing)

Don’t trust frameworks and tools blindly

Cannot beat fundamental science (FLP, CAP)
Make very specific tradeoffs and promises
Contain bugs in design and implementation

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

7. Introduction Page 8

Fundamental problem: Mutable State

Programming languages:

i := i +1

SQL:

UPDATE Account
SET Balance = Balance ∗1 . 0 3

Changes have to

be performed in a controlled manner

become visible for all users in a consistent manner

Would an append-only behavior (with lifetime intervals) solve the problems?

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

7. Introduction Page 9

Fundamental problem: Mutable State

Programming languages:

i := i +1

SQL:

UPDATE Account
SET Balance = Balance ∗1 . 0 3

Changes have to

be performed in a controlled manner

become visible for all users in a consistent manner

Would an append-only behavior (with lifetime intervals) solve the problems?

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

7. Introduction Page 10

Fundamental problem: Mutable State

Programming languages:

i := i +1

SQL:

UPDATE Account
SET Balance = Balance ∗1 . 0 3

Changes have to

be performed in a controlled manner

become visible for all users in a consistent manner

Would an append-only behavior (with lifetime intervals) solve the problems?

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

7. Introduction Page 11

Challenges of Mutable State

Parallel access

same user, different locations: threads, multiprocessors, clusters,
datacenters, mobile clients
different users: banks, flight bookings, supply chains, ...

Complex modifications

associated updates: withdrawal from one accounts, depositing on another.
applications-level consistency: account may not go into overdraft,
unavailable items may not be sold

Error handling

crash/unavailablity, in particular during updates

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

7. Introduction Page 12

Abstraction: Transactions

Just one possible, but very useful and common abstraction

Tackles the issues of keeping data consistent

Provides well-defined concurrency and failure models

Implementation details and system issues are hidden from the developer

Generic approach, suitable for a wide range of workloads

Major success factor of relational databases

Catching up in popularity other areas,e.g.,

transactional file systems,
hardware-transactional RAM

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

7. Introduction Page 13

Transactions: Concepts

Application (or user) explicitly groups a sequence of operations that
belongs together

A small number of primitives

BEGIN TRANSACTION / BOT: explicit start
COMMIT TRANSACTION: finish and keep results
ABORT TRANSACTION: finish and discard results

More complex models allow nested transaction, safepoints, ...

Generic access to data items: READ(X) and WRITE(X)

For the transaction’s requests and effects on the underlying data certain
properties are guaranteed: ACID properties.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

7. Introduction Page 14

Transaction Examples

(Example 1a) Debit/credit

Consider a debit/credit-program of a bank which transfers a certain amount of
money between two accounts.
Executing the program will give us the following transaction T:

BEGIN

% Withdraw

READ current value VA of account A from disk into T’s local main memory;

decrement VA by amount X;

WRITE new value VA’ = VA - X of account A from T’s local main memory onto disk;

% Deposit

READ current value VB of account B from disk into T’s local main memory;

increment VB by amount X;

WRITE new value VB’ = VB + X of account B from T’s local main memory onto disk;

COMMIT;

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

7. Introduction Page 15

Discussion of Exampe 1a

Assume when executing T the system runs into a failure, e.g. after writing
A and before reading B. A customer of the bank has lost X money!
Assume debit/credit-transaction T1 is running concurrently to a transaction
T2, which computes the balance of the accounts A and B. Then the READ

and WRITE accesses of both transactions may be interleaved. Assume that
T2 is executed after T1 writing A and before T1 writing B, then the balance
computed will be incorrect.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

7. Introduction Page 16

Discussion of Exampe 1a

Assume when executing T the system runs into a failure, e.g. after writing
A and before reading B. A customer of the bank has lost X money!
Assume debit/credit-transaction T1 is running concurrently to a transaction
T2, which computes the balance of the accounts A and B. Then the READ

and WRITE accesses of both transactions may be interleaved. Assume that
T2 is executed after T1 writing A and before T1 writing B, then the balance
computed will be incorrect.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

7. Introduction Page 17

(Example.1b) Distributed debit/credit

Assume that

Two different branches of the bank are involved

Each branch maintains it own servers and stores its data there

Assume further,

At Branch1 a debit/credit-transaction is started

At Branch2 a balancing transaction is started,

Both transactions involve the same accounts.

Transactions shall have access to accounts on remote server via remote
procedure calls (RPCs) (which are synchronous)
The following procedures may exist

withdraw(account, amount),

deposit(account, amount)

getBalance(account).

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

7. Introduction Page 18

A possible interleaving when both transactions are running in
parallel.

Branch1(accountA) Branch2(accountB)

T1 : withdraw(A,10)
T1 : call(deposit(B,10))

T2 : getBalance(B)
T2 : call(getBalance(A))
T1 : deposit(B,10)

T2 : getBalance(A)
T2 : display A+B

↓ time

An incorrect balance will be displayed!

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

7. Introduction Page 19

A possible interleaving when both transactions are running in
parallel.

Branch1(accountA) Branch2(accountB)

T1 : withdraw(A,10)
T1 : call(deposit(B,10))

T2 : getBalance(B)
T2 : call(getBalance(A))
T1 : deposit(B,10)

T2 : getBalance(A)
T2 : display A+B

↓ time

An incorrect balance will be displayed!

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

7. Introduction Page 20

(Example 1c) Distributed debit/credit

Assume that

Two different branches of the bank are involved

Each branch maintains it own servers and stores its data there

Assume further,

At Branch1 a debit/credit-transaction is started

At Branch2 a balancing transaction is started,

Both transactions involve the same accounts.

Communication is explicitly implemented by exchanging messages between the
involved servers.

Finally assume, that each transaction implements exclusive access to both
accounts during execution.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

7. Introduction Page 21

(Example 1c) Distributed debit/credit

Assume that

Two different branches of the bank are involved

Each branch maintains it own servers and stores its data there

Assume further,

At Branch1 a debit/credit-transaction is started

At Branch2 a balancing transaction is started,

Both transactions involve the same accounts.

Communication is explicitly implemented by exchanging messages between the
involved servers.

Finally assume, that each transaction implements exclusive access to both
accounts during execution.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

7. Introduction Page 22

(Example 1c) Distributed debit/credit

Assume that

Two different branches of the bank are involved

Each branch maintains it own servers and stores its data there

Assume further,

At Branch1 a debit/credit-transaction is started

At Branch2 a balancing transaction is started,

Both transactions involve the same accounts.

Communication is explicitly implemented by exchanging messages between the
involved servers.

Finally assume, that each transaction implements exclusive access to both
accounts during execution.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

7. Introduction Page 23

A possible interleaving

Branch1 Branch2

T1 : {{lock(A); withdraw(A,10)} ||
{send {lock(B); deposit(B,10)} to
Branch2}}

T2 : {{lock(B); getBalance(B)} ||
{send {lock(A); getBalance(A)} to
Branch1}}

T1 : {wait for ACK of deposit at
Branch2}

T2 : {wait until lock(A) granted}
T2 : {wait for balance of A}
T1 : {wait until lock(B) granted}

↓ time

A deadlock has occured which is difficult to detect!

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

7. Introduction Page 24

A possible interleaving

Branch1 Branch2

T1 : {{lock(A); withdraw(A,10)} ||
{send {lock(B); deposit(B,10)} to
Branch2}}

T2 : {{lock(B); getBalance(B)} ||
{send {lock(A); getBalance(A)} to
Branch1}}

T1 : {wait for ACK of deposit at
Branch2}

T2 : {wait until lock(A) granted}
T2 : {wait for balance of A}
T1 : {wait until lock(B) granted}

↓ time

A deadlock has occured which is difficult to detect!

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

7. Introduction Page 25

(Example 2) Electronic commerce

Consider the following purchasing activity, which covers several different servers
and service located at different sites:

A client connects to a bookstore’s server and starts browsing and querying
the catalog.

The client gradually fills a shopping card with items intended to purchase.

When the client is about to check out she makes final decisions what to
purchase.

The client provides all necessary information for placing a legally binding
order, e.g. shipping address and credit card.

The merchants’s server forwards the payment information to the customer’s
bank or to a clearinghouse. When the payment is accepted, the inventory is
updated, shipping is initiated and the client is notified about successful
completion of her order.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

7. Introduction Page 26

Discussion of Example 2

The final step of the purchasing is the most critical one. Several servers
maintained by different institutions are involved.
Most importantly it has to be guaranteed that

either all the tasks of the final step are processed correctly,
or the whole purchasing activity is undone.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

7. Introduction Page 27

(Example 3) Mobile computing

Assume that the described purchasing activity is performed via a smartphone.
Then the situation gets even more complicated.

The smartphone might be temporarily disconnected from the mobile
network. Thus it is not guaranteed that the state of the catalog as seen by
the client reflects the state of the catalog at the server.

If the client enters a dead spot during processing of the final step of the
purchasing activity, confusion may arise, e.g. the purchasing is started
again resulting in double orders.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

7. Introduction Page 28

Transaction Guarantees

ACID properties

A tomicity: A transaction is executed completely or not at all.

C onsistency: Consistency constraints defined on the data are preserved.

I solation: Each transaction behaves as if it were operating alone on the data.

D urability: All effects will survive all software and hardware failures.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

7. Introduction Page 29

Discussion of ACID guarantees

classical, “all-inclusive” guarantee in (relational) database systems

solves the problems demonstrated in Examples (and more)

well-established theory and clear semantics

mature and well-engineered implementations

Recovery for A, D
Concurrency Control for I

What do you think of this abstraction, in particular after part 1 of the lecture?

We are looking at a fork in the road:

provide ACID, but limit scalability and availability

favour scalability and availability, but sacrifice on isolation/consistency:
NoSQL, BASE

The course will cover both!

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

7. Introduction Page 30

Discussion of ACID guarantees

classical, “all-inclusive” guarantee in (relational) database systems

solves the problems demonstrated in Examples (and more)

well-established theory and clear semantics

mature and well-engineered implementations

Recovery for A, D
Concurrency Control for I

What do you think of this abstraction, in particular after part 1 of the lecture?

We are looking at a fork in the road:

provide ACID, but limit scalability and availability

favour scalability and availability, but sacrifice on isolation/consistency:
NoSQL, BASE

The course will cover both!

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

7. Introduction Page 31

Discussion of ACID guarantees

classical, “all-inclusive” guarantee in (relational) database systems

solves the problems demonstrated in Examples (and more)

well-established theory and clear semantics

mature and well-engineered implementations

Recovery for A, D
Concurrency Control for I

What do you think of this abstraction, in particular after part 1 of the lecture?

We are looking at a fork in the road:

provide ACID, but limit scalability and availability

favour scalability and availability, but sacrifice on isolation/consistency:
NoSQL, BASE

The course will cover both!

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

7. Introduction Page 32

Data-Centric Distributed Applications

Union of two technologies:

Database Systems + Distributed Systems

Database systems provide

data independence (physical & logical)
centralized and controlled data access
integration

Distributed System provide

distribution
scaling
reliability

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

7. Introduction Page 33

Data-Centric Distributed Applications

Union of two technologies:

Database Systems + Distributed Systems

Database systems provide

data independence (physical & logical)
centralized and controlled data access
integration

Distributed System provide

distribution
scaling
reliability

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

7. Introduction Page 34

Goals of Data-Centric Distributed Applications

1 Transparent management of distributed and replicated data

2 Reliability/availability through distributed transactions

3 Improved performance

4 Easier and more economical system expansion

Focus of this course: Distributed transactions!
If you are interested in the other aspects, visit my course in the winter term.

Challenges of Distributed/Replicated Data

Storing copies of data on different nodes enables availability, performance and reliability

Data needs be consistent

Synchronizing concurrent access
Detecting and recovering from failures
Deadlock management

Fundamental conflicts between requirements (see CAP theorem)

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

7. Introduction Page 35

Goals of Data-Centric Distributed Applications

1 Transparent management of distributed and replicated data

2 Reliability/availability through distributed transactions

3 Improved performance

4 Easier and more economical system expansion

Focus of this course: Distributed transactions!
If you are interested in the other aspects, visit my course in the winter term.

Challenges of Distributed/Replicated Data

Storing copies of data on different nodes enables availability, performance and reliability

Data needs be consistent

Synchronizing concurrent access
Detecting and recovering from failures
Deadlock management

Fundamental conflicts between requirements (see CAP theorem)

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

	Introduction

