
9. Reliability 9.2. Commit coordination Page 30

9.2. Commit coordination

Reliability: From a single node to a distributed system

Singles node may cause significant availability problems: How long is the
recovery time in ARIES?

Single nodes are single points of failure (→ D)

Loss of disk storage not very likely, but happening

Even “centralized” systems need some “poor mans” distribution:

Periodic backup on a separate system (→ periods between backups at risk)
Log shipping: write log to remote storage(s) (→ how to ensure
durability/stable storage, performance problem)

Fully distributed setups need to coordinate (A,D)

Partitioning: split collections along a predicate or along attributes
Replication: keep multiple copies of the same data

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

fischerp
Stift



9. Reliability 9.2. Commit coordination Page 31

Commit Coordination and Consensus

Problem setting

A set of independent servers

storing data items
communicating by messages

A transactions spanning several servers, i.e. subtransactions at some sites

For a successfull commit, all substransactions have to be committed, but

Each subtransaction may fail (indepedently)
Even successfull substransactions may have to be aborted (atomicity)

Approach

All nodes have to agree on the same outcome of the transaction

Combination of local commit+agreement on commit decision

Local part: perform same steps in single-site commit (log), but wait for
finalization until a consensus is achieved
Distribution: perform agreement to commit or abort, deal with failures
A single site cannot make a commit decision

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 32

Problem Modelling

Nodes have local state

Needed for protocol
Also definition of Distributed Database

Node exhibit fail-stop or fail-recover, extension to byzantine failures possible

Asynchronous communication

Messages may take arbitrarily long
Message loss is indiscernible from arbitrary delay
We assume message integrity, though
(generalization of typical internet behavior)

Network may see temporary interruptions and partitions

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

fischerp
Stift

fischerp
Stift



9. Reliability 9.2. Commit coordination Page 33

Requirements of commit/consensus

Formal Properties

Termination: All correct processes eventually decide.

Agreement: All correct processes select the same value (even if they fail
later on)

Integrity/Validity: All deciding processes select the “right” value (one
that is proposed)

These are safety and lifeness properties

Practical Concern: Efficiency

Number of messages (overall)

Number of rounds/exchanges

Could you think of lower bounds of for the best case?

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 34

Challenges

Theoretical Impossibility

Our problem modelling clashes with Fisher-Lynch-Patterson (FLP) [1985]:
“No consensus can be guaranteed in an asynchronous communication system
in the presence of any failures”.

Inituition:
Is a process actually dead or will it come back and affect the consensus?

We cannot make systems synchronous and reliable
Possible workarounds:

Fault masking: assume eventual recovery and keep waiting

Failure detection - also affected by FLP, either

accurate but not live (possibly waiting forever)
live but not accurate: enforce synchronous behavior (e.g., timeouts) and
restore/kill misdetected survivors

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 35

Overview on Commit Protocols

Fundamental approach

Rely on a leader/coordinator

A value is proposed by the leader or by a client talking to the leader

Participants decide and inform the coordinator

Popular algorithms

2PC: Simple and effective, but can degrade into blocking behavior

3PC: Add another phase to reduce period of vulnerability spread decision
knowledge, may be unsafe in the presence of network splits

Paxos, Multi-Paxos, Paxos commit: generalized, safe, nonblocking, may not
terminate

Raft: same goals as Paxos, supposedly simpler to understand and
implement

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

fischerp
Stift

fischerp
Stift

fischerp
Stift

fischerp
Stift

fischerp
Stift



9. Reliability 9.2. Commit coordination Page 36

9.2. 1 2-Phase-Commit (2PC)

Phase 1a: Coordinator sends vote-request to participants.

Phase 1b: When participant receives vote-request it returns either vote-commit or
vote-abort to coordinator.

Phase 2a: Coordinator collects all votes; if all are vote-commit, it sends
global-commit to all participants, otherwise it sends global-abort.

Phase 2b: Each participant waits for global-commit or global-abort and reacts
accordingly - discarding the result or making it permanent.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 37

9.2. 1 2-Phase-Commit (2PC)

Phase 1a: Coordinator sends vote-request to participants.

Phase 1b: When participant receives vote-request it returns either vote-commit or
vote-abort to coordinator.

Phase 2a: Coordinator collects all votes; if all are vote-commit, it sends
global-commit to all participants, otherwise it sends global-abort.

Phase 2b: Each participant waits for global-commit or global-abort and reacts
accordingly - discarding the result or making it permanent.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 38

9.2. 1 2-Phase-Commit (2PC)

Phase 1a: Coordinator sends vote-request to participants.

Phase 1b: When participant receives vote-request it returns either vote-commit or
vote-abort to coordinator.

Phase 2a: Coordinator collects all votes; if all are vote-commit, it sends
global-commit to all participants, otherwise it sends global-abort.

Phase 2b: Each participant waits for global-commit or global-abort and reacts
accordingly - discarding the result or making it permanent.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 39

9.2. 1 2-Phase-Commit (2PC)

Phase 1a: Coordinator sends vote-request to participants.

Phase 1b: When participant receives vote-request it returns either vote-commit or
vote-abort to coordinator.

Phase 2a: Coordinator collects all votes; if all are vote-commit, it sends
global-commit to all participants, otherwise it sends global-abort.

Phase 2b: Each participant waits for global-commit or global-abort and reacts
accordingly - discarding the result or making it permanent.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

fischerp
Stift

fischerp
Stift

fischerp
Stift

fischerp
Stift

fischerp
Stift



9. Reliability 9.2. Commit coordination Page 40

Protocal automata

Notation: message received
message sent

msg∗: message sent-to/received-from all

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

fischerp
Stift

fischerp
Stift



9. Reliability 9.2. Commit coordination Page 41

Distributed Transaction Log: Supporting fail-recover

Log operations

(1) When the coordinator sends vote-request, it writes a start-2PC record in the DT
log. This record contains the identities of the participants, and may be written
before or after sending the messages.

(2) If a participant replies vote-commit, it writes a vote-commit record in the DT log,
before sending vote-commit to the coordinator. This record contains the name of
the coordinator and a list of the other participants. If the participant votes no, it
writes an abort record either before or after the participant sends vote-abort to
the coordinator.

(3) Before the coordinator sends global-commit to the participants, it writes a
commit record in the DT Iog.

(4) When the coordinator sends global-abort to the participants, it writes an abort
record in the DT log. The record may be written before or after sending the
messages.

(5) After receiving global-commit (or global-abort), a participant writes a commit (or
abort) record in the DT log.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

fischerp
Stift

fischerp
Stift



9. Reliability 9.2. Commit coordination Page 42

Distributed Transaction Log: Supporting fail-recover

Log operations

(1) When the coordinator sends vote-request, it writes a start-2PC record in the DT
log. This record contains the identities of the participants, and may be written
before or after sending the messages.

(2) If a participant replies vote-commit, it writes a vote-commit record in the DT log,
before sending vote-commit to the coordinator. This record contains the name of
the coordinator and a list of the other participants. If the participant votes no, it
writes an abort record either before or after the participant sends vote-abort to
the coordinator.

(3) Before the coordinator sends global-commit to the participants, it writes a
commit record in the DT Iog.

(4) When the coordinator sends global-abort to the participants, it writes an abort
record in the DT log. The record may be written before or after sending the
messages.

(5) After receiving global-commit (or global-abort), a participant writes a commit (or
abort) record in the DT log.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

fischerp
Stift

fischerp
Stift

fischerp
Stift

fischerp
Stift

fischerp
Stift



9. Reliability 9.2. Commit coordination Page 43

Distributed Transaction Log: Supporting fail-recover

Log operations

(1) When the coordinator sends vote-request, it writes a start-2PC record in the DT
log. This record contains the identities of the participants, and may be written
before or after sending the messages.

(2) If a participant replies vote-commit, it writes a vote-commit record in the DT log,
before sending vote-commit to the coordinator. This record contains the name of
the coordinator and a list of the other participants. If the participant votes no, it
writes an abort record either before or after the participant sends vote-abort to
the coordinator.

(3) Before the coordinator sends global-commit to the participants, it writes a
commit record in the DT Iog.

(4) When the coordinator sends global-abort to the participants, it writes an abort
record in the DT log. The record may be written before or after sending the
messages.

(5) After receiving global-commit (or global-abort), a participant writes a commit (or
abort) record in the DT log.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

fischerp
Stift



9. Reliability 9.2. Commit coordination Page 44

Distributed Transaction Log: Supporting fail-recover

Log operations

(1) When the coordinator sends vote-request, it writes a start-2PC record in the DT
log. This record contains the identities of the participants, and may be written
before or after sending the messages.

(2) If a participant replies vote-commit, it writes a vote-commit record in the DT log,
before sending vote-commit to the coordinator. This record contains the name of
the coordinator and a list of the other participants. If the participant votes no, it
writes an abort record either before or after the participant sends vote-abort to
the coordinator.

(3) Before the coordinator sends global-commit to the participants, it writes a
commit record in the DT Iog.

(4) When the coordinator sends global-abort to the participants, it writes an abort
record in the DT log. The record may be written before or after sending the
messages.

(5) After receiving global-commit (or global-abort), a participant writes a commit (or
abort) record in the DT log.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 45

Distributed Transaction Log: Supporting fail-recover

Log operations

(1) When the coordinator sends vote-request, it writes a start-2PC record in the DT
log. This record contains the identities of the participants, and may be written
before or after sending the messages.

(2) If a participant replies vote-commit, it writes a vote-commit record in the DT log,
before sending vote-commit to the coordinator. This record contains the name of
the coordinator and a list of the other participants. If the participant votes no, it
writes an abort record either before or after the participant sends vote-abort to
the coordinator.

(3) Before the coordinator sends global-commit to the participants, it writes a
commit record in the DT Iog.

(4) When the coordinator sends global-abort to the participants, it writes an abort
record in the DT log. The record may be written before or after sending the
messages.

(5) After receiving global-commit (or global-abort), a participant writes a commit (or
abort) record in the DT log.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

fischerp
Stift



9. Reliability 9.2. Commit coordination Page 46

Termination Protocol: Coordinator Timeouts

Timeout @ WAIT

Can not unilaterally commit.
Can abort and send
Global-abort, since no global
commit has been made

Timeout @ ABORT / COMMIT

Repeatedly send Global-abort /
Global-commit to the
unresponsive participants.
Stay blocked and wait for their
ACK messages.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

fischerp
Stift

fischerp
Stift



9. Reliability 9.2. Commit coordination Page 47

Termination Protocol: Participant Timeouts

Timeout @ INITIAL

Coordinator must have failed at
INITIAL.
Can abort.
If Prepare arrives later, can
either Vote-abort or ignore it
(i.e., let the coordinator timeout
@WAIT).

Timeout @ READY

Can not unilaterally commit or
change its decision to an abort.
Stay blocked.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

fischerp
Stift



9. Reliability 9.2. Commit coordination Page 48

Recovery Protocol: Coordinator Failures

Failure @ INITIAL

Start the commit process upon
recovery.

Failure @ WAIT

Restart the commit process upon
recovery.

Failure @ ABORT / COMMIT

If all ACKs have been received,
nothing to do.
Else, invoke the termination
protocol.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

fischerp
Stift

fischerp
Stift

fischerp
Stift



9. Reliability 9.2. Commit coordination Page 49

Recovery Protocol: Participant Failures

Failure @ INITIAL

Abort upon recovery.

Timeout @ READY

The coordinator has already
been informed about the local
decision.
Treat as Timeout @ READY and
invoke the termination protocol.

Timeout @ ABORT/COMMIT

Nothing to do

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

fischerp
Stift

fischerp
Stift

fischerp
Stift



9. Reliability 9.2. Commit coordination Page 50

Recovery Protocol at Log Level

If the DT log contains a start-2PC record, then S was the host of the
coordinator. If it also contains a commit or abort record, then the coordinator
had decided before the failure and it can resend its decision. If neither record is
found, the coordinator can now unilaterally decide Abort by inserting an abort
record in the DT log.

If the DT log doesn’t contain a start-2PC record, then S was the host of a
participant. There are three cases to consider:

(1) The DT log contains a commit or abort record. Then the participant had
reached its decision before the failure.

(2) The DT log does not contain a vote-commit record. Then either the
participant failed before voting or voted vote-abort (but did not write an
abort record before failing). It can therefore unilaterally abort by inserting an
abort record in the DT log.

(3) The DT log contains a vote-commit but no commit or abort record. Then
the participant failed while in its uncertainty period. It can try to reach a
decision using the cooperative termination protocol.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

fischerp
Stift

fischerp
Stift

fischerp
Stift

fischerp
Stift



9. Reliability 9.2. Commit coordination Page 51

Recovery Protocol at Log Level

If the DT log contains a start-2PC record, then S was the host of the
coordinator. If it also contains a commit or abort record, then the coordinator
had decided before the failure and it can resend its decision. If neither record is
found, the coordinator can now unilaterally decide Abort by inserting an abort
record in the DT log.

If the DT log doesn’t contain a start-2PC record, then S was the host of a
participant. There are three cases to consider:

(1) The DT log contains a commit or abort record. Then the participant had
reached its decision before the failure.

(2) The DT log does not contain a vote-commit record. Then either the
participant failed before voting or voted vote-abort (but did not write an
abort record before failing). It can therefore unilaterally abort by inserting an
abort record in the DT log.

(3) The DT log contains a vote-commit but no commit or abort record. Then
the participant failed while in its uncertainty period. It can try to reach a
decision using the cooperative termination protocol.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 52

Recovery Protocol at Log Level

If the DT log contains a start-2PC record, then S was the host of the
coordinator. If it also contains a commit or abort record, then the coordinator
had decided before the failure and it can resend its decision. If neither record is
found, the coordinator can now unilaterally decide Abort by inserting an abort
record in the DT log.

If the DT log doesn’t contain a start-2PC record, then S was the host of a
participant. There are three cases to consider:

(1) The DT log contains a commit or abort record. Then the participant had
reached its decision before the failure.

(2) The DT log does not contain a vote-commit record. Then either the
participant failed before voting or voted vote-abort (but did not write an
abort record before failing). It can therefore unilaterally abort by inserting an
abort record in the DT log.

(3) The DT log contains a vote-commit but no commit or abort record. Then
the participant failed while in its uncertainty period. It can try to reach a
decision using the cooperative termination protocol.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

fischerp
Stift



9. Reliability 9.2. Commit coordination Page 53

Recovery Protocol at Log Level

If the DT log contains a start-2PC record, then S was the host of the
coordinator. If it also contains a commit or abort record, then the coordinator
had decided before the failure and it can resend its decision. If neither record is
found, the coordinator can now unilaterally decide Abort by inserting an abort
record in the DT log.

If the DT log doesn’t contain a start-2PC record, then S was the host of a
participant. There are three cases to consider:

(1) The DT log contains a commit or abort record. Then the participant had
reached its decision before the failure.

(2) The DT log does not contain a vote-commit record. Then either the
participant failed before voting or voted vote-abort (but did not write an
abort record before failing). It can therefore unilaterally abort by inserting an
abort record in the DT log.

(3) The DT log contains a vote-commit but no commit or abort record. Then
the participant failed while in its uncertainty period. It can try to reach a
decision using the cooperative termination protocol.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 54

DT log garbage collection

A site cannot delete log records of a transaction T from its DT log before its
recovery manager has processed Commit or Abort.

The coordinator should not delete the records of transaction T from its DT log
until it has received messages indicating that Commit or Abort has been
processed at all other sites where T executed. To this end participants may send
a final ACK-message when moving in their commit-state.

In the literature there are many optimizations described for 2PC - have a look
into the Weikum-Vossen book, for example!

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 55

DT log garbage collection

A site cannot delete log records of a transaction T from its DT log before its
recovery manager has processed Commit or Abort.

The coordinator should not delete the records of transaction T from its DT log
until it has received messages indicating that Commit or Abort has been
processed at all other sites where T executed. To this end participants may send
a final ACK-message when moving in their commit-state.

In the literature there are many optimizations described for 2PC - have a look
into the Weikum-Vossen book, for example!

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 56

2-Phase-Commit Variants

decentralized 2PC

Phase 1: Coordinator sends, depending on its vote, vote-commit or vote-abort to
all participants.

Phase 2a: When a participant receives vote-abort from the coordinator, it simply
aborts. Otherwise it has received vote-commit and returns either commit or abort
to coordinator and to all other participants. If it sends abort, it aborts its local
computation.

Phase 2b: After having received all votes, the coordinator and all participants
have all votes available; if all are commit, they commit and otherwise abort.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 57

2-Phase-Commit Variants

decentralized 2PC

Phase 1: Coordinator sends, depending on its vote, vote-commit or vote-abort to
all participants.

Phase 2a: When a participant receives vote-abort from the coordinator, it simply
aborts. Otherwise it has received vote-commit and returns either commit or abort
to coordinator and to all other participants. If it sends abort, it aborts its local
computation.

Phase 2b: After having received all votes, the coordinator and all participants
have all votes available; if all are commit, they commit and otherwise abort.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 58

Notation: message received
message sent

msg∗: message sent-to/received-from all

State transitions during decentralized 2PC.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 59

linear 2PC: outer nodes

All processes are linearly ordered, w.l.o.g. P0,P1,P2, . . . ,Pn, where P0 is the coordinator.
Communication is possible between neighbors.

(S1) When the protocol starts, P0 sends message vote-request to its right neighbor.

(S4) If process Pn receives a message from its left neighbor:

(1) If message is vote-request, then

(i) if its own vote is commit, it sends commit to its left neighbor and commit.
(ii) if its own vote is abort, it sends abort to its left neighbor and aborts.

(2) If message is abort, then it aborts.

(S5) If process P0 receives message commit from its right neighbor, it commits; if it receives
message abort, it aborts.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

fischerp
Stift



9. Reliability 9.2. Commit coordination Page 60

linear 2PC: outer nodes

All processes are linearly ordered, w.l.o.g. P0,P1,P2, . . . ,Pn, where P0 is the coordinator.
Communication is possible between neighbors.

(S1) When the protocol starts, P0 sends message vote-request to its right neighbor.

(S4) If process Pn receives a message from its left neighbor:

(1) If message is vote-request, then

(i) if its own vote is commit, it sends commit to its left neighbor and commit.
(ii) if its own vote is abort, it sends abort to its left neighbor and aborts.

(2) If message is abort, then it aborts.

(S5) If process P0 receives message commit from its right neighbor, it commits; if it receives
message abort, it aborts.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

fischerp
Stift



9. Reliability 9.2. Commit coordination Page 61

linear 2PC: outer nodes

All processes are linearly ordered, w.l.o.g. P0,P1,P2, . . . ,Pn, where P0 is the coordinator.
Communication is possible between neighbors.

(S1) When the protocol starts, P0 sends message vote-request to its right neighbor.

(S4) If process Pn receives a message from its left neighbor:

(1) If message is vote-request, then

(i) if its own vote is commit, it sends commit to its left neighbor and commit.
(ii) if its own vote is abort, it sends abort to its left neighbor and aborts.

(2) If message is abort, then it aborts.

(S5) If process P0 receives message commit from its right neighbor, it commits; if it receives
message abort, it aborts.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

fischerp
Stift

fischerp
Stift

fischerp
Stift

fischerp
Stift



9. Reliability 9.2. Commit coordination Page 62

linear 2PC: outer nodes

All processes are linearly ordered, w.l.o.g. P0,P1,P2, . . . ,Pn, where P0 is the coordinator.
Communication is possible between neighbors.

(S1) When the protocol starts, P0 sends message vote-request to its right neighbor.

(S4) If process Pn receives a message from its left neighbor:

(1) If message is vote-request, then

(i) if its own vote is commit, it sends commit to its left neighbor and commit.
(ii) if its own vote is abort, it sends abort to its left neighbor and aborts.

(2) If message is abort, then it aborts.

(S5) If process P0 receives message commit from its right neighbor, it commits; if it receives
message abort, it aborts.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

fischerp
Stift



9. Reliability 9.2. Commit coordination Page 63

linear 2PC - inner nodes

(S2) If process Pi , 1 ≤ i < n, receives a message from its left neighbor:

(1) If message is vote-request, then

(i) if its own vote is commit, it sends vote-request to its right neighbor.
(ii) otherwise, it sends abort to its left and right neighbors and aborts.

(2) If message is abort, then it sends abort to its right neighbor and aborts.

(S3) If process Pi , 1 ≤ i < n, receives a message from its right neighbor:

(1) If message is commit, then it sends commit to its left neighbor and commits.
(2) If message is abort, then it sends abort to its left neighbor and aborts.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

fischerp
Stift



9. Reliability 9.2. Commit coordination Page 64

linear 2PC - inner nodes

(S2) If process Pi , 1 ≤ i < n, receives a message from its left neighbor:

(1) If message is vote-request, then

(i) if its own vote is commit, it sends vote-request to its right neighbor.
(ii) otherwise, it sends abort to its left and right neighbors and aborts.

(2) If message is abort, then it sends abort to its right neighbor and aborts.

(S3) If process Pi , 1 ≤ i < n, receives a message from its right neighbor:

(1) If message is commit, then it sends commit to its left neighbor and commits.
(2) If message is abort, then it sends abort to its left neighbor and aborts.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

fischerp
Stift



9. Reliability 9.2. Commit coordination Page 65

linear 2PC - inner nodes

(S2) If process Pi , 1 ≤ i < n, receives a message from its left neighbor:

(1) If message is vote-request, then

(i) if its own vote is commit, it sends vote-request to its right neighbor.
(ii) otherwise, it sends abort to its left and right neighbors and aborts.

(2) If message is abort, then it sends abort to its right neighbor and aborts.

(S3) If process Pi , 1 ≤ i < n, receives a message from its right neighbor:

(1) If message is commit, then it sends commit to its left neighbor and commits.
(2) If message is abort, then it sends abort to its left neighbor and aborts.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 66

Notation: message received
message sent

State transitions during linear 2PC.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 67

Analysis of 2PC

Correctness of 2 PC

Agreement: Every node agrees on the value proposed by the coordinator if
and only if it is told by it. The coordinator sends the same value to
everybody.

Validity: A value is chosen that is proposed by at least one participant

Termination: If nodes never fail, the protocol with eventually terminate
(even under asynchronous semantics).

2 PC and failures

2PC may be blocking even in case of only partial failures.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 68

Analysis of 2PC

Correctness of 2 PC

Agreement: Every node agrees on the value proposed by the coordinator if
and only if it is told by it. The coordinator sends the same value to
everybody.

Validity: A value is chosen that is proposed by at least one participant

Termination: If nodes never fail, the protocol with eventually terminate
(even under asynchronous semantics).

2 PC and failures

2PC may be blocking even in case of only partial failures.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 69

Efficiency Comparison

Message Complexity: How many messages are exchanged to reach a decision?
Time Complexity: How long does it take to reach the decision? As several messages
can be send in parallel, the number of message exchange rounds is counted.

Number of messages Rounds of communication

centralized 2PC 3n 3
decentralized 2PC
linear 2PC

n participants.

How far is this from an optimal solution

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 70

Efficiency Comparison

Message Complexity: How many messages are exchanged to reach a decision?
Time Complexity: How long does it take to reach the decision? As several messages
can be send in parallel, the number of message exchange rounds is counted.

Number of messages Rounds of communication

centralized 2PC 3n 3
decentralized 2PC
linear 2PC

n participants.

How far is this from an optimal solution

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

fischerp
Stift

fischerp
Stift

fischerp
Stift

fischerp
Stift

fischerp
Stift



9. Reliability 9.2. Commit coordination Page 71

9.2. 2 3-Phase-Commit (3PC)

3PC: Unblock by 2PC by spreading decision knowledge

The period between the moment a process votes Yes for commit and the
moment it has received sufficient information to know the decision is called
uncertainty period. During its uncertainty period a process is called
uncertain.

NB: If any operational process is uncertain, then no process (whether
operational or failed) can have decided to commit.

As a consequence, if the operational sites discover that they all are
uncertain, they can decide to abort, as the other failed process cannot have
decided commit before.

3PL splits the commit/abort phase in two steps

First communicate the outcome to everyone (but not force them to commit)
Let them commit only after everyone knows the outcome

In case of coordinator failure, participants know the outcome

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

fischerp
Stift



9. Reliability 9.2. Commit coordination Page 72

9.2. 2 3-Phase-Commit (3PC)

3PC: Unblock by 2PC by spreading decision knowledge

The period between the moment a process votes Yes for commit and the
moment it has received sufficient information to know the decision is called
uncertainty period. During its uncertainty period a process is called
uncertain.

NB: If any operational process is uncertain, then no process (whether
operational or failed) can have decided to commit.

As a consequence, if the operational sites discover that they all are
uncertain, they can decide to abort, as the other failed process cannot have
decided commit before.

3PL splits the commit/abort phase in two steps

First communicate the outcome to everyone (but not force them to commit)
Let them commit only after everyone knows the outcome

In case of coordinator failure, participants know the outcome

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 73

9.2. 2 3-Phase-Commit (3PC)

3PC: Unblock by 2PC by spreading decision knowledge

The period between the moment a process votes Yes for commit and the
moment it has received sufficient information to know the decision is called
uncertainty period. During its uncertainty period a process is called
uncertain.

NB: If any operational process is uncertain, then no process (whether
operational or failed) can have decided to commit.

As a consequence, if the operational sites discover that they all are
uncertain, they can decide to abort, as the other failed process cannot have
decided commit before.

3PL splits the commit/abort phase in two steps

First communicate the outcome to everyone (but not force them to commit)
Let them commit only after everyone knows the outcome

In case of coordinator failure, participants know the outcome

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 74

9.2. 2 3-Phase-Commit (3PC)

3PC: Unblock by 2PC by spreading decision knowledge

The period between the moment a process votes Yes for commit and the
moment it has received sufficient information to know the decision is called
uncertainty period. During its uncertainty period a process is called
uncertain.

NB: If any operational process is uncertain, then no process (whether
operational or failed) can have decided to commit.

As a consequence, if the operational sites discover that they all are
uncertain, they can decide to abort, as the other failed process cannot have
decided commit before.

3PL splits the commit/abort phase in two steps

First communicate the outcome to everyone (but not force them to commit)
Let them commit only after everyone knows the outcome

In case of coordinator failure, participants know the outcome

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 75

3-phase commit (3PC) protocol

Phase 1a: Coordinator sends vote-request to participants.

Phase 1b: When participant receives vote-request it returns either vote-commit or
vote-abort to coordinator. If it sends vote-abort, it aborts its local computation.

Phase 2a: Coordinator collects all votes; if all are vote-commit, it sends
prepare-commit to all participants, otherwise it sends global-abort, and halts.

Phase 2b: Each participant that voted vote-commit waits for prepare-commit, or
waits for global-abort after which it halts. If prepare-commit is received, the
process replies ready-commit and therefore the coordinator knows that this
process is no longer uncertain.

Phase 3a: (Prepare to commit) Coordinator waits until all participants have sent
ready-commit, and then sends global-commit to all.

Phase 3b: (Prepare to commit) Participant waits for global-commit and then
commits. It knows that no other process is uncertain and thus commits without
violating NB.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

fischerp
Stift

fischerp
Stift



9. Reliability 9.2. Commit coordination Page 76

3-phase commit (3PC) protocol

Phase 1a: Coordinator sends vote-request to participants.

Phase 1b: When participant receives vote-request it returns either vote-commit or
vote-abort to coordinator. If it sends vote-abort, it aborts its local computation.

Phase 2a: Coordinator collects all votes; if all are vote-commit, it sends
prepare-commit to all participants, otherwise it sends global-abort, and halts.

Phase 2b: Each participant that voted vote-commit waits for prepare-commit, or
waits for global-abort after which it halts. If prepare-commit is received, the
process replies ready-commit and therefore the coordinator knows that this
process is no longer uncertain.

Phase 3a: (Prepare to commit) Coordinator waits until all participants have sent
ready-commit, and then sends global-commit to all.

Phase 3b: (Prepare to commit) Participant waits for global-commit and then
commits. It knows that no other process is uncertain and thus commits without
violating NB.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

fischerp
Stift



9. Reliability 9.2. Commit coordination Page 77

3-phase commit (3PC) protocol

Phase 1a: Coordinator sends vote-request to participants.

Phase 1b: When participant receives vote-request it returns either vote-commit or
vote-abort to coordinator. If it sends vote-abort, it aborts its local computation.

Phase 2a: Coordinator collects all votes; if all are vote-commit, it sends
prepare-commit to all participants, otherwise it sends global-abort, and halts.

Phase 2b: Each participant that voted vote-commit waits for prepare-commit, or
waits for global-abort after which it halts. If prepare-commit is received, the
process replies ready-commit and therefore the coordinator knows that this
process is no longer uncertain.

Phase 3a: (Prepare to commit) Coordinator waits until all participants have sent
ready-commit, and then sends global-commit to all.

Phase 3b: (Prepare to commit) Participant waits for global-commit and then
commits. It knows that no other process is uncertain and thus commits without
violating NB.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 78

Notation: message received
message sent

State transitions during 3PC.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

fischerp
Stift



9. Reliability 9.2. Commit coordination Page 79

Termination Protocol: Coordinator Timeouts

Timeout @ PRECOMMIT

Participants must be at least in
READY.
Move all the participants to
PRECOMMIT.
Globally commit

Timeout @ ABORT / COMMIT

Ignore and treat as completed
Participants are either at
PRECOMMIT or READY and
they can continue to
termination.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

fischerp
Stift



9. Reliability 9.2. Commit coordination Page 80

Termination Protocol: Participant Timeouts

Timeout @ INITIAL

Coordinator must have failed at
INITIAL.
Can abort.
If Prepare arrives later, can
either Vote-abort or ignore it
(i.e., let the coordinator timeout
@WAIT).

Timeout @ READY

Voted to commit, but does not
know the coordinator’s global
decision.
Elect a new coordinator and
terminate using a special
protocol.

Timeout @ PRECOMMIT

Same as Timeout @ READY

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

fischerp
Stift



9. Reliability 9.2. Commit coordination Page 81

Recovery Protocol: Coordinator Failures

Failure @ INITIAL

Start the commit process upon
recovery.

Failure @ WAIT

The participants may have
elected a new coordinator and
terminated.
Ask around for the fate of the
transaction

Failure @ PRECOMMIT

Ask around for the fate of the
transaction

Failure @ ABORT / COMMIT

If all ACKs have been received,
nothing to do.
Else, invoke the termination
protocol.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

fischerp
Stift



9. Reliability 9.2. Commit coordination Page 82

Recovery Protocol: Participant Failures

Failure @ INITIAL

Abort upon recovery.

Timeout @ READY

The coordinator has already
been informed about the local
decision.
Upon Recovery, ask around

Timeout @ PRECOMMIT

Ask around how the others have
terminated the transaction

Timeout @ ABORT/COMMIT

Nothing to do

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

fischerp
Stift



9. Reliability 9.2. Commit coordination Page 83

Analysis of 3PC

Correctness of 3 PC

Given the incresased complexity, not a full proof

Validity: A value is chosen that is proposed by at least one participant

Termination:

If nodes never fail, the protocol with eventually terminate (even under
asynchronous semantics).
If nodes fail before reaching a commit consensus, the protocol will terminate
with abort
If nodes fail after a commit consensus, a new coordinator will recover the
commit decision

Are we done? Did we overcome FLP?

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 84

3 PC and network splits

Consider the case in which

the network is split in two during the second phase (prepare to commit)

and the coordinator fails

Further assume that

on one partition (A), all participants received the “prepare to commit”

on the other (B), none

Each side will pick a coordinator, which in turn contacts the available
participants

Partition (A) → commit

Partition (B) → abort

3PC can become unsafe.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer


