
9. Reliability 9.2. Commit coordination Page 85

9.2. 3 Paxos

Overall goals

Safe

Nonblocking, making progress if possible

Resilient to failures, delays and network partitions

Design Ideas

Combine Leader election with consensus protocol

Not an heuristic bolted on top
Roles may change on the fly
Safe with multiple leader(s), but may not make progress

Acceptance with quorum/majority:

Progress possible if F+1 (out of 2F) voters agree

Numbered sequence of proposals:

Embrace asynchrony

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 86

9.2. 3 Paxos

Overall goals

Safe

Nonblocking, making progress if possible

Resilient to failures, delays and network partitions

Design Ideas

Combine Leader election with consensus protocol

Not an heuristic bolted on top
Roles may change on the fly
Safe with multiple leader(s), but may not make progress

Acceptance with quorum/majority:

Progress possible if F+1 (out of 2F) voters agree

Numbered sequence of proposals:

Embrace asynchrony

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 87

Publication History

Several main works
Lamport, Leslie (1998) The Part-Time
Parliament ACM Transactions on Com-
puter Systems 16 (2): 133–169

Fake and lighthearted “Greek” his-
tory to explain the protocol. Not
well-received by receivers, rejected
and kept unpublished for years

Lamport, Leslie (2001) Paxos Made Sim-
ple ACM SIGACT News (Distributed
Computing Column) 32, 4

Straight-forward write up of the
same protocol by the same author
in order to prove the simplicity of
the algorithm

Tushar Chandra, Robert Griesemer, and
Joshua Redstone (2007) Paxos Made Live
- An Engineering Perspective: 26th ACM
PODC

Discussing the sometimes convolu-
ted issues to go from the algorithm
to an actual working system

Followup works on optimizations, generalizations, applications, ...

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 88

Roles in Paxos
Client

issues a request and waits for response
e.g.

”
write“-request on a distributed file server or a commit

Acceptor
Acceptors work in quorums, a group which is voting on requests.
They issue responses and act like the fault-tolerant memory
accept only once.

Proposer
tries to convince the Acceptors that the request is o.k.
coordinates conflicts

Learner
act as replicators.
If a client request has been granted (and agreed upon) by the Acceptors, the
learners take action
e.g. execute the request, send responses to the client

Leader
is a distinguished Proposer
if more than one Proposer believe that they are leaders, this conflict needs
to be resolved

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 89

Basic Idea

One (or more) node decide(s) to be coordinator/proposer

Proposes a value and requests acceptance from other nodes (acceptors)

If it fails, it will try again

Separate agreement on value from leader acceptance

Consequences and questions

What happens if there are multiple proposers?

What if these propose different values?

What if there is a network split?

What if a proposer crashes at any point?

Use proposal ordering and majorities!

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 90

Basic Idea

One (or more) node decide(s) to be coordinator/proposer

Proposes a value and requests acceptance from other nodes (acceptors)

If it fails, it will try again

Separate agreement on value from leader acceptance

Consequences and questions

What happens if there are multiple proposers?

What if these propose different values?

What if there is a network split?

What if a proposer crashes at any point?

Use proposal ordering and majorities!

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 91

Basic Idea

One (or more) node decide(s) to be coordinator/proposer

Proposes a value and requests acceptance from other nodes (acceptors)

If it fails, it will try again

Separate agreement on value from leader acceptance

Consequences and questions

What happens if there are multiple proposers?

What if these propose different values?

What if there is a network split?

What if a proposer crashes at any point?

Use proposal ordering and majorities!

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 92

Basic Idea

One (or more) node decide(s) to be coordinator/proposer

Proposes a value and requests acceptance from other nodes (acceptors)

If it fails, it will try again

Separate agreement on value from leader acceptance

Consequences and questions

What happens if there are multiple proposers?

What if these propose different values?

What if there is a network split?

What if a proposer crashes at any point?

Use proposal ordering and majorities!

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 93

Basic Idea

One (or more) node decide(s) to be coordinator/proposer

Proposes a value and requests acceptance from other nodes (acceptors)

If it fails, it will try again

Separate agreement on value from leader acceptance

Consequences and questions

What happens if there are multiple proposers?

What if these propose different values?

What if there is a network split?

What if a proposer crashes at any point?

Use proposal ordering and majorities!

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 94

Majority voting

Deficiences of existing approaches

2 PC (and 3 PC without errors) required positive votes from all participants

3 PC with failure in precommit: single node with knowledge sufficient

Majority and Quorums

Paxos requires F+1 nodes to agree out of 2 F acceptors
How does this help?

Half of the acceptors can fail!

No two separate majorities may exist at the same time, even if there are
network splits

If two majorities agree on two distinct,successive proposals (a and b),
then there is at least a single node that is in both majorities. This is
means that this node has seen and accepted both of them-

If there there is a third (fourth, etc) majority (c,d..., then there will be a
set of nodes that has seen and accepted all these proposals.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 95

Majority voting

Deficiences of existing approaches

2 PC (and 3 PC without errors) required positive votes from all participants

3 PC with failure in precommit: single node with knowledge sufficient

Majority and Quorums

Paxos requires F+1 nodes to agree out of 2 F acceptors
How does this help?

Half of the acceptors can fail!

No two separate majorities may exist at the same time, even if there are
network splits

If two majorities agree on two distinct,successive proposals (a and b),
then there is at least a single node that is in both majorities. This is
means that this node has seen and accepted both of them-

If there there is a third (fourth, etc) majority (c,d..., then there will be a
set of nodes that has seen and accepted all these proposals.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 96

Majority voting

Deficiences of existing approaches

2 PC (and 3 PC without errors) required positive votes from all participants

3 PC with failure in precommit: single node with knowledge sufficient

Majority and Quorums

Paxos requires F+1 nodes to agree out of 2 F acceptors
How does this help?

Half of the acceptors can fail!

No two separate majorities may exist at the same time, even if there are
network splits

If two majorities agree on two distinct,successive proposals (a and b),
then there is at least a single node that is in both majorities. This is
means that this node has seen and accepted both of them-

If there there is a third (fourth, etc) majority (c,d..., then there will be a
set of nodes that has seen and accepted all these proposals.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 97

Majority voting

Deficiences of existing approaches

2 PC (and 3 PC without errors) required positive votes from all participants

3 PC with failure in precommit: single node with knowledge sufficient

Majority and Quorums

Paxos requires F+1 nodes to agree out of 2 F acceptors
How does this help?

Half of the acceptors can fail!

No two separate majorities may exist at the same time, even if there are
network splits

If two majorities agree on two distinct,successive proposals (a and b),
then there is at least a single node that is in both majorities. This is
means that this node has seen and accepted both of them-

If there there is a third (fourth, etc) majority (c,d..., then there will be a
set of nodes that has seen and accepted all these proposals.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 98

Majority voting

Deficiences of existing approaches

2 PC (and 3 PC without errors) required positive votes from all participants

3 PC with failure in precommit: single node with knowledge sufficient

Majority and Quorums

Paxos requires F+1 nodes to agree out of 2 F acceptors
How does this help?

Half of the acceptors can fail!

No two separate majorities may exist at the same time, even if there are
network splits

If two majorities agree on two distinct,successive proposals (a and b),
then there is at least a single node that is in both majorities. This is
means that this node has seen and accepted both of them-

If there there is a third (fourth, etc) majority (c,d..., then there will be a
set of nodes that has seen and accepted all these proposals.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 99

Majority voting

Deficiences of existing approaches

2 PC (and 3 PC without errors) required positive votes from all participants

3 PC with failure in precommit: single node with knowledge sufficient

Majority and Quorums

Paxos requires F+1 nodes to agree out of 2 F acceptors
How does this help?

Half of the acceptors can fail!

No two separate majorities may exist at the same time, even if there are
network splits

If two majorities agree on two distinct,successive proposals (a and b),
then there is at least a single node that is in both majorities. This is
means that this node has seen and accepted both of them-

If there there is a third (fourth, etc) majority (c,d..., then there will be a
set of nodes that has seen and accepted all these proposals.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 100

Majority voting

Deficiences of existing approaches

2 PC (and 3 PC without errors) required positive votes from all participants

3 PC with failure in precommit: single node with knowledge sufficient

Majority and Quorums

Paxos requires F+1 nodes to agree out of 2 F acceptors
How does this help?

Half of the acceptors can fail!

No two separate majorities may exist at the same time, even if there are
network splits

If two majorities agree on two distinct,successive proposals (a and b),
then there is at least a single node that is in both majorities. This is
means that this node has seen and accepted both of them-

If there there is a third (fourth, etc) majority (c,d..., then there will be a
set of nodes that has seen and accepted all these proposals.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 101

Proposal ordering - Idea

Challenges of single round and timeouts in 2PC

Single proposer is a single point of failure (crash)

Timeouts assume synchronous message propagation and processing

Interaction of network splits, crashes and message delays not addressed

Multiple concurrent proposals

Allow multiple proposers and proposals to be active at the same time

Acceptors need to make their decision on which proposals to accept and
which to reject

We need need at least unique identifiers for proposals

Providing a (global) order among proposal works even better

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 102

Proposal ordering - Idea

Challenges of single round and timeouts in 2PC

Single proposer is a single point of failure (crash)

Timeouts assume synchronous message propagation and processing

Interaction of network splits, crashes and message delays not addressed

Multiple concurrent proposals

Allow multiple proposers and proposals to be active at the same time

Acceptors need to make their decision on which proposals to accept and
which to reject

We need need at least unique identifiers for proposals

Providing a (global) order among proposal works even better

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 103

Naive approaches

Accept first, reject later proposals

Only a single majority possible (=⇒ safe)

What about simultaneous or out-of-order proposals?

What about proposer crashes?

Accept newer proposals

Requires global ordering

Withdraw support on older proposals

Make progress on dead and alive proposers (=⇒ life)

What about proposers that are slow but not dead: multiple “winners”

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 104

Naive approaches

Accept first, reject later proposals

Only a single majority possible (=⇒ safe)

What about simultaneous or out-of-order proposals?

What about proposer crashes?

Accept newer proposals

Requires global ordering

Withdraw support on older proposals

Make progress on dead and alive proposers (=⇒ life)

What about proposers that are slow but not dead: multiple “winners”

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 105

Paxos solution

Dealing with multiple proposals

Use globally ordered proposal numbers,e.g., site-id:local-number

Only accept the most recent proposal:

Acceptors will keep track on the highest proposal number it has accepted
Proposals with lower numbers will be rejected

On acceptance, tell the new proposer the previously accepted value

Consequences

Progress will be made towards more recent proposals

Values with be learned/retained on leader change

Value proposed by leader may not be the outcome of the consensus

The set of consenting nodes will at least stay at the same size

The proposer will find and preserve a consensus if it already exists

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 106

Paxos solution

Dealing with multiple proposals

Use globally ordered proposal numbers,e.g., site-id:local-number

Only accept the most recent proposal:

Acceptors will keep track on the highest proposal number it has accepted
Proposals with lower numbers will be rejected

On acceptance, tell the new proposer the previously accepted value

Consequences

Progress will be made towards more recent proposals

Values with be learned/retained on leader change

Value proposed by leader may not be the outcome of the consensus

The set of consenting nodes will at least stay at the same size

The proposer will find and preserve a consensus if it already exists

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 107

Basic Paxos - First Phase

Phase 1a: Prepare

The Proposer (the Leader) selects a proposal number n and sends a prepare
message to a Quorum of Acceptors

Phase 1b: Promise
If the proposal number n is larger than any previous proposal

then each Acceptor promises not to accept proposals with a proposal number
less than n
and sends a promise message including proposal number and value

otherwise the Acceptor sends a denial
Also each Acceptor sends the value and number of its last accepted or
promised proposal to the Proposer

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 108

Basic Paxos - Second Phase

Phase 2a: Accept!
If the Proposer receives (positive) responses from a Quorum of Acceptors

it may choose a value to be agreed upon
this value must be from the values of the Acceptors that have already
accepted a value
otherwise the proposer can choose any value.

The Proposer sends an accept! message to a quorum of Acceptors including
the chosen value

Phase 2b: Accepted
If the Acceptor receives an accept! message for the most recent proposal it
has promised,

it accepts the value
each Acceptor sends an accepted message to the proposer and every Learner.

otherwise it sends a denial and the last proposal number and value it has
promised to accept

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 109

Basic Paxos — without Errors

Client

Acceptors

Proposer (Leader)

prepare(n) promise(n,
{Va,Vb,Vc})

Acceptors

Accept!
(n,Vn)

Learners

Client

Time

Accepted
(n,Vn)

Response

Proposer

A
B
C

Request

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 110

Basic Paxos — Failures and no Value Accepted

Acceptors

Proposer 1

prepare(1)

Time

fails

Proposer 2 (new Leader)

prepare(2)
promise(1,{1,1})

promise(2,{2,1,1})

Acceptors

Proposer 1 
returns

fails

Accept!
(1,{1,1})

Acceptors

fails

Accept!
(1,{1,1})

deny(1)
already 

promised 2

deny(1)
already 

promised 2

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 111

Basic Paxos — Failures and the First Value Accepted

Acceptors

Proposer 1

prepare(1)

Time

fails

Proposer 2 (new Leader)

prepare(2)

promise(1,{1,1}) deny(1)
already 

promised 2

promise(2,{2})
Proposer 1 

returns

fails

Acceptors

Accepted
(1,1)

fail

Accept!
(1,{1,1})

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 112

Basic Paxos — Consistency in Time

Accepted
(1,1)

Proposer 1

prepare
(1)

fails

Proposer 2 (new Leader)

promise(1,{1,1})

promise(2,{2})

Proposer 1 returns
fails

Accept!
(1,1)

Acceptors

Proposer 2 
returns

fails

deny(1)
already 

promised 2

Acceptors

learns that 
1 is accepted

Accepted
(1,1)

prepare(2)

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 113

Basic Paxos — Termination not Guaranteed

Proposer 1

prepare(1)
fails

promise(1,{1,1,1})

Acceptors

Proposer 2

prepare(2)

fails

promise(2,{1,1,1})

Acceptors Acceptors

returns

prepare(3)
promise(3,{1,1,1})

fails

Proposer 2

prepare(4)

returns

Proposer 1

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 114

Leader election concerns

Paxos is safe in the presence of multiple leaders

Paxos is not guaranteed to make progress, since new leaders may ursurp
and the block each other(livelock)

Tradeoff in leader election:

Aggressive: livelock, costly in terms of messages
Reluctant: protocol stalled

Partial solution: use suitable leader election timeout

There is more we can do!

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 115

Multi-Paxos

Paxos can be optimized regarding Message Complexity

The first round can be skipped if the proposer stays the same.

Then, the previous 2nd round plays the role of the following 1st round.

Only the proposer is allowed to skip the 2nd round who succeeded in the
1st round.

This way, the delay reduces to two round and the number of messages
reduce to the quorum

This implementation is called Multi-Paxos

Leader in Multi-Paxos is often called Master

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 116

Multi-Paxos — Reducing the Delay and the Message
Complexity

Acceptors

Proposer (Leader)

prepare(n) promise(n,
{Va,Vb,Vc})

Acceptors

Accept!
(n,Vn)

Learners

Time

Accepted
(n,Vn)

Proposer

A
B
C

1st round
can be 
skipped
for the
same

 proposer

Accept!
(n+1,Vn+1)

Accepted
(n+1,Vn+1)

same Proposer

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



9. Reliability 9.2. Commit coordination Page 117

Further Optimizations

Learners

A single distinguished Learner serves as relay and informs the other Learners
when a value has been chosen
In most applications the role of the leader includes the role of the
distinguished Learner

Quorum communication

The leader may send prepare and accept only to a quorum
Other acceptors do not need to be bothered unless they are needed

Hashing the value: Instead of sending the value, it suffices to send
cryptographic secure hash values

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer


