
10. Distributed Concurrency Control Page 1

10. Distributed Concurrency Control

ACID properties

A tomicity: A transaction is executed completely or not at all.

C onsistency: Consistency constraints defined on the data are preserved.

I solation: Each transaction behaves as if it were operating alone on
the data.

D urability: All effects will survive all software and hardware failures.

Challenges of Distributed/Replicated Data

Storing copies of data on different nodes enables availability, performance
and reliability

Data needs be consistent

Synchronizing concurrent access
Detecting and recovering from failures
Deadlock management

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10. Distributed Concurrency Control Page 2

Discussion of ACID guarantees

classical, “all-inclusive” guarantee in (relational) database systems

solves the problems demonstrated in Examples (and more)

well-established theory and clear semantics

mature and well-engineered implementations

Recovery for A, D
Concurrency Control for I

We are looking at a fork in the road:

provide ACID, but limit scalability and availability

favour scalability and availability, but sacrifice on isolation/consistency:
NoSQL, BASE

This chapter will focus ACID consistency

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10. Distributed Concurrency Control 10.1. Concurrency Control Refresh Page 3

Concurrency Control Refresh

Page Model

All operations on data will be eventually mapped into read and write operations
on pages.

To study the concurrent execution of transactions it is sufficient to inspect the
interleavings of the resulting page operations.

Independently whether a page resides in cache memory or resides on disk, read
and write are considered as indivisible.

Set of transactions T = {T1, . . . ,Tn}.
A transaction is given as a sequence of read (R) - and write (W)-actions over
database objects {A,B,C , . . .}, e.g.

T1 = R1A W1A R1B W1B
T2 = R2A W2A R2B W2B
T3 = R3A W3B

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10. Distributed Concurrency Control 10.1. Concurrency Control Refresh Page 4

Ordering and dependencies within a transaction

In the basic definition, operations within a transaction are totally ordered.

Write operations possibly depend on all read inputs seen before:

Let WX be the j-th action of transaction T
Let RA1, . . . , RAn are the read actions of T being processed in the
indicated order before WX .
Then the value of X written by T is given by fT ,j(a1, . . . , an), where fT ,j is
an arbitrary, however unknown function and the a’s are the values read in
the indicated order by the preceding read actions.

Complete transaction

We call a transaction complete, if its first action is begin b and its last action either is
commit c or abort a.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10. Distributed Concurrency Control 10.1. Concurrency Control Refresh Page 5

Histories

Let T = {T1, . . . ,Tn} be a (finite) set of complete transactions, where for each Ti we
have Ti = (OPi , <i).

A history of T is a pair S = (OPS , <S), where

OPS = ∪n
i=1OPi and <S a partial order on OPS such that <S⊆ ∪n

i=1 <i .

Let p, q ∈ OPS , where p and q belong to distinct transactions, however access
the same data object. If p or q is a write action, then either p <S q or q <S p

Schedules

A schedule of T is a prefix of a history.

S1 = R1A W1A R3A R1B W1B R2A W2A W3B R2B W2B
S2 = R1A W1A R3A R1B W1B R2A W2A W3B R2B W2B
S3 = R3A R1A W1A R1B W1B R2A W2A R2B W2B W3B

A schedule is called serial, if it is not interleaved.

S4 = R3A W3B R1A W1A R1B W1B R2A W2A R2B W2B

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10. Distributed Concurrency Control 10.1. Concurrency Control Refresh Page 6

Serializability

A schedule is called (conflict-)serializable,1 if there exists a (conflict-)equivalent serial
schedule over the same set of transactions.

Conflict graph

The conflict graph of a schedule S is given as G(S) = (V ,E), where V is the set of
transactions in S and the set of edges E is given by the conflicts in S : Ti → Tj ∈ E , iff
there are conflicting actions p ∈ OPi , q ∈ OPj and p <S q.

S = . . .WiA . . .RjA . . . ⇒ Ti → Tj ∈ E , if there is no other write-action to A
between WiA und RjA in S .

S = . . .WiA . . .WjA . . . ⇒ Ti → Tj ∈ E , if there is no other write-action to A
between WiA und WjA in S .

Ŝ = . . .RiA . . .WjA . . . ⇒ Ti → Tj ∈ E , if there is no other write-action to A
between RiA und WjA in S .

Serializability Testing

A schedule is serializable iff its conflict graph is acyclic.

1We consider only conflict-serializability and therefore talk about serializability in the
sequel, for short.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10. Distributed Concurrency Control 10.1. Concurrency Control Refresh Page 7

Example

Schedule S1: R1A W1A R3A R1B W1B R2A W2A W3B R2B W2B
Schedule S2: R3A R1A W1A R1B W1B R2A W2A R2B W2B W3B

S1 is serializable, S2 is not.

To exclude not serializable schedules, a so called transaction manager enforces certain
transaction behaviour.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10. Distributed Concurrency Control 10.1. Concurrency Control Refresh Page 8

2-Phase Locking (2PL)

Serializable schedules are guaranteed, if all transactions obey the 2PL-protocol:

For each transaction T , each RA and WA has to be surrounded by a lock/unlock
pair LA,UA:

T = . . .R/WA . . . =⇒ T = . . . LA . . .R/WA . . .UA . . .

For each A read or written in T there exists at most one pair LA and UA.
In any schedule S , the same object A cannot be locked at the same time by more
than one transaction:

S = . . . LiA . . . LjA . . . =⇒ S = . . . LiA . . .UiA . . . LjA . . .

For each T and any LA1,UA2 there holds: T = . . . LA1 . . .UA2
=⇒ No more locking after the first unlock!

Every schedule according to 2PL is serializable, however

Not every serializable schedule can be produced by 2PL.
Deadlocks may occur.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10. Distributed Concurrency Control 10.1. Concurrency Control Refresh Page 9

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10. Distributed Concurrency Control 10.1. Concurrency Control Refresh Page 10

Example 1

T1 = L1A R1A L1B U1A W1B U1B,
T2 = L2A R2A W2A U2A,
T3 = L3C R3C U3C .

S = L1A R1A L1B U1A L2A R2A L3C R3C U3C W1B U1B W2A U2A

Example 2

T1 = L1A R1A L1B U1A W1B U1B,
T2 = L2A R2A W2A U2A,
T3 = L3C R3C U3C .

S = L1A R1A L1B U1A L2A R2A L3C R3C U3C W1B U1B W2A U2A

The lock point of a transaction using 2PL is given by the first unlock of the
transaction.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10. Distributed Concurrency Control 10.1. Concurrency Control Refresh Page 11

2PL guarantees serializability of schedules.

Let S be a schedule of a set of 2PL-transactions T = {T1, . . . ,Tn}.

Assume, S is not serializable, i.e. the conflict graph G(S) is cyclic, where w.l.o.g.
T1 → T2 → · · · → Tk → T1.

Each edge T → T ′ implies T and T ′ having conflicting actions, where the action of T
preceds the one of T ′.

Because of surrounding actions by lock/unlock and the 2PL-rule, T ′ can execute its
action only after the lock-point of T . This implies the following structure of S , where
A1, . . . ,Ak are data items:

S = . . .U1A1 . . . L2A1 . . . ,
...
S = . . .Uk−1Ak−1 . . . LkAk−1 . . . ,
S = . . .UkAk . . . L1Ak

Let l1, . . . , lk be the lock points of the involved transactions. Then we have l1 before l2,
. . . , lk−1 before lk and lk before l1. However this is a contradiction to the structure of a
schedule. Therefore S is serializable.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10. Distributed Concurrency Control 10.1. Concurrency Control Refresh Page 12

2PL guarantees serializability of schedules.

Let S be a schedule of a set of 2PL-transactions T = {T1, . . . ,Tn}.

Assume, S is not serializable, i.e. the conflict graph G(S) is cyclic, where w.l.o.g.
T1 → T2 → · · · → Tk → T1.

Each edge T → T ′ implies T and T ′ having conflicting actions, where the action of T
preceds the one of T ′.

Because of surrounding actions by lock/unlock and the 2PL-rule, T ′ can execute its
action only after the lock-point of T . This implies the following structure of S , where
A1, . . . ,Ak are data items:

S = . . .U1A1 . . . L2A1 . . . ,
...
S = . . .Uk−1Ak−1 . . . LkAk−1 . . . ,
S = . . .UkAk . . . L1Ak

Let l1, . . . , lk be the lock points of the involved transactions. Then we have l1 before l2,
. . . , lk−1 before lk and lk before l1. However this is a contradiction to the structure of a
schedule. Therefore S is serializable.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10. Distributed Concurrency Control 10.1. Concurrency Control Refresh Page 13

2PL guarantees serializability of schedules.

Let S be a schedule of a set of 2PL-transactions T = {T1, . . . ,Tn}.

Assume, S is not serializable, i.e. the conflict graph G(S) is cyclic, where w.l.o.g.
T1 → T2 → · · · → Tk → T1.

Each edge T → T ′ implies T and T ′ having conflicting actions, where the action of T
preceds the one of T ′.

Because of surrounding actions by lock/unlock and the 2PL-rule, T ′ can execute its
action only after the lock-point of T . This implies the following structure of S , where
A1, . . . ,Ak are data items:

S = . . .U1A1 . . . L2A1 . . . ,
...
S = . . .Uk−1Ak−1 . . . LkAk−1 . . . ,
S = . . .UkAk . . . L1Ak

Let l1, . . . , lk be the lock points of the involved transactions. Then we have l1 before l2,
. . . , lk−1 before lk and lk before l1. However this is a contradiction to the structure of a
schedule. Therefore S is serializable.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10. Distributed Concurrency Control 10.1. Concurrency Control Refresh Page 14

2PL guarantees serializability of schedules.

Let S be a schedule of a set of 2PL-transactions T = {T1, . . . ,Tn}.

Assume, S is not serializable, i.e. the conflict graph G(S) is cyclic, where w.l.o.g.
T1 → T2 → · · · → Tk → T1.

Each edge T → T ′ implies T and T ′ having conflicting actions, where the action of T
preceds the one of T ′.

Because of surrounding actions by lock/unlock and the 2PL-rule, T ′ can execute its
action only after the lock-point of T . This implies the following structure of S , where
A1, . . . ,Ak are data items:

S = . . .U1A1 . . . L2A1 . . . ,
...
S = . . .Uk−1Ak−1 . . . LkAk−1 . . . ,
S = . . .UkAk . . . L1Ak

Let l1, . . . , lk be the lock points of the involved transactions. Then we have l1 before l2,
. . . , lk−1 before lk and lk before l1. However this is a contradiction to the structure of a
schedule. Therefore S is serializable.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10. Distributed Concurrency Control 10.1. Concurrency Control Refresh Page 15

2PL guarantees serializability of schedules.

Let S be a schedule of a set of 2PL-transactions T = {T1, . . . ,Tn}.

Assume, S is not serializable, i.e. the conflict graph G(S) is cyclic, where w.l.o.g.
T1 → T2 → · · · → Tk → T1.

Each edge T → T ′ implies T and T ′ having conflicting actions, where the action of T
preceds the one of T ′.

Because of surrounding actions by lock/unlock and the 2PL-rule, T ′ can execute its
action only after the lock-point of T . This implies the following structure of S , where
A1, . . . ,Ak are data items:

S = . . .U1A1 . . . L2A1 . . . ,
...
S = . . .Uk−1Ak−1 . . . LkAk−1 . . . ,
S = . . .UkAk . . . L1Ak

Let l1, . . . , lk be the lock points of the involved transactions. Then we have l1 before l2,
. . . , lk−1 before lk and lk before l1. However this is a contradiction to the structure of a
schedule. Therefore S is serializable.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10. Distributed Concurrency Control 10.2. Preliminaries of Distributed Concurrency Control Page 16

10.2: Preliminaries of Distributed Concurrency Control

General reference architecture.

Federated system

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10. Distributed Concurrency Control 10.2. Preliminaries of Distributed Concurrency Control Page 17

Sites and subtransactions

Let be given a fixed number of sites across which the data is distributed.
The server at site i , 1 ≤ i ≤ n is responsible for a (finite) set Di of data
items. The corresponding global database is given as D = ∪ni=1Di .

Data items are not replicated; thus Di ∩ Dj = ∅, i 6= j .

Let T = {T1, . . . ,Tm} be a set of transactions, where Ti = (OPi , <i),
1 ≤ i ≤ m.

Transaction Ti is called global, if its actions are running at more than one
server; otherwise it is called local.

The part of a transaction Ti being executed at a certain site j is called
subtransaction and is denoted by Tij .

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10. Distributed Concurrency Control 10.2. Preliminaries of Distributed Concurrency Control Page 18

Parallelism as prerequisite for distributed execution

Basic definitions of transactions (and most visualizations) assume a total
order.

This is insufficient to express distributed execution of a transaction:
Fine-grained coordination needed

Relaxed model needed: partial ordering among operations

Formal definition:
A transaction T is defined as (OP, <)

OP is a finite set of T ’s actions RX and WX , where X is a data item.

< ⊆ OP × OP is a partial order on OP which fulfills the following properties:
Each data item is read and written by T at most once.

If p is a read action and q is a write actions of T and both access the same data item,
then p < q.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10. Distributed Concurrency Control 10.2. Preliminaries of Distributed Concurrency Control Page 19

A parallel debit/credit transaction. b: BEGIN; c: COMMIT.

When transactions are depicted as directed graphs, we omit transitive edges.

Two parallel debit/credit transactions, each prepared for parallel execution.

=⇒ Definition of a schedule? Definition of serializability?

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10. Distributed Concurrency Control 10.2. Preliminaries of Distributed Concurrency Control Page 20

Two parallel debit/credit transactions, each prepared for parallel execution.

Transaction T1 Transaction T2

Locally observable schedules of the two transactions when executed in parallel by CPU PA and
CPU PB.

(i)
PA : R1A W1A R2A W2A
PB : R1B W1B R2B W2B

(ii)
PA : R1A W1A R2A W2A
PB : R2B W2B R1B W1B

On each CPU in both cases the local schedules are serializable - however, globally, in the
second case the transactions are not executed in a serializable manner!

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10. Distributed Concurrency Control 10.2. Preliminaries of Distributed Concurrency Control Page 21

A schedule/history of the two parallel debit/credit transactions.

The schedule is not serializable
as its conflict graph is cyclic.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10. Distributed Concurrency Control 10.2. Preliminaries of Distributed Concurrency Control Page 22

Local and global schedules

We are interested in deciding whether or not the execution of a set of transactions is
serializable or not.

At the local sites we can observe an evolving sequence of the respective
transactions’ actions.

We would like to decide whether or not all these locally observable sequences
imply a (globally) serializable schedule.

However, on the global level we cannot observe an evolving sequence, as there
does not exist a notion of global physical time.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10. Distributed Concurrency Control 10.2. Preliminaries of Distributed Concurrency Control Page 23

Example

Schedule:

Observed local schedules:
Site 1 (PA) : R1A W1A R2A W2A
Site 2 (PB) : R2B W2B R1B W1B

Can schedules be represented as action sequences, as well?

... yes, we call them global schedules.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10. Distributed Concurrency Control 10.2. Preliminaries of Distributed Concurrency Control Page 24

From now on local and global schedules are sequences of actions!

Let T = {T1, . . . ,Tm} be a set of transactions being executed at n sites. Let
S1, . . . , Sn be the corresponding local schedules.

A global schedule of T with respect to S1, . . . , Sn is any sequence S of the actions of
the transactions in T , such that its projection onto the local sites equals the
corresponding local schedules S1, . . . , Sn.

Example

Consider local schedules S1 = R1A W2A and S2 = W1B R2B.

Global schedules:
S : R1A W1B W2A R2B
S ′ : R1A W1B R2B W2A

Not a global schedule: S ′′ : R1A R2B W1B W2A

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10. Distributed Concurrency Control 10.2. Preliminaries of Distributed Concurrency Control Page 25

Examples where there does not exist a serializable global schedule

T1 = R1A W1B, T2 = R2C W2A are global transactions and T3 = R3B W3C is a local
transaction.

S1 : R1A W2A
S2 : R3B W1B R2C W3C

Note, in S2 subtransactions T12 and T22 have no confliciting actions!

T1 = RA RD und T2 = RB RC are global transactions, while T3 = RA RB WA WB and
T4 = RD WD RC WC are local transactions.

S1 : R1A R3A R3B W3A W3B R2B
S2 : R4D W4D R1D R2C R4C W4C

Note, both global transactions are only reading and, in particular, disjoint data sets!

In both examples the local schedules are serializable, however no serializable global schedule
exists.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10. Distributed Concurrency Control 10.2. Preliminaries of Distributed Concurrency Control Page 26

Serializability of global schedules

As we do not have replication of data items, whenever there is a conflict in a
global schedule, the same conflict must be part of exactly one local schedule.

Consequently, the conflict graph of a global schedule is given as the union of the
conflict graphs of the respective local schedules.

In particular, given a set of local schedules, either all or none corresponding global
schedule is serializable.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10. Distributed Concurrency Control 10.2. Preliminaries of Distributed Concurrency Control Page 27

Examples

S1 : R1A W1A R2A W2A
S2 : R2B W2B R1B W1B

S1 : R1A W2A
S2 : R3B W1B R2C W3C

S1 : R1A R3A R3B W3A W3B R2B
S2 : R4D W4D R1D R2C R4C W4C

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10. Distributed Concurrency Control 10.2. Preliminaries of Distributed Concurrency Control Page 28

Types of federation

homogeneous federation:

Same services and protocols at all servers. Characterized by distribution
transparency: the federation is perceived by the outside world as if it were not
distributed at all.

heterogenous federation:

Servers are autonomous and independent of each other; no uniformity of services
and protocols across the federation.

Interface to recovery

Every global transactions runs the 2-phase-commit protocol. By that protocol the
subtransactions of a global transaction synchronize such that either all subtransactions
commit, or none of them, i.e. all abort.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

