10. Distributed Concurrency Control

ACID properties

A tomicity: A transaction is executed completely or not at all.

C onsistency: Consistency constraints defined on the data are preserved.

solation: Each transaction behaves as if it were operating alone on
the data.

D urability: All effects will survive all software and hardware failures.

Challenges of Distributed/Replicated Data

m Storing copies of data on different nodes enables availability, performance
and reliability
m Data needs be consistent

m Synchronizing concurrent access
m Detecting and recovering from failures
m Deadlock management

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10. Distributed Concurrency Control

Discussion of ACID guarantees

m classical, “all-inclusive” guarantee in (relational) database systems
m solves the problems demonstrated in Examples (and more)
m well-established theory and clear semantics

m mature and well-engineered implementations

m Recovery for A, D
m Concurrency Control for |

We are looking at a fork in the road:
m provide ACID, but limit scalability and availability

m favour scalability and availability, but sacrifice on isolation/consistency:
NoSQL, BASE

This chapter will focus ACID consistency

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10. Distributed Concurrency Control

Concurrency Control Refresh

Page Model

m All operations on data will be eventually mapped into read and write operations
on pages.

m To study the concurrent execution of transactions it is sufficient to inspect the
interleavings of the resulting page operations.

m Independently whether a page resides in cache memory or resides on disk, read
and write are considered as indivisible.

m Set of transactions 7 = {Tx,..., Tp}.

m A transaction is given as a sequence of read (R) - and write (W)-actions over
database objects {A, B, C, ...}, e.g.

Tl = R1A W1A RlB W1B

T2 = R2A W2A RzB WzB
T3 = RsA WsB

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10. Distributed Concurrency Contol

Ordering and dependencies within a transaction

m In the basic definition, operations within a transaction are totally ordered.
m Write operations possibly depend on all read inputs seen before:
m Let WX be the j-th action of transaction T

m Let RA1, ..., RA, are the read actions of T being processed in the
indicated order before WX.
m Then the value of X written by T is given by frj(ai,...,an), where fr; is

an arbitrary, however unknown function and the a's are the values read in
the indicated order by the preceding read actions.

Complete transaction
We call a transaction complete, if its first action is begin b and its last action either is
commit ¢ or abort a.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10. Distributed Concurrency Contol

Histories
Let 7 ={Tx,..., To} be a (finite) set of complete transactions, where for each T; we
have T; = (OP,', <,').
A history of T is a pair S = (OPs, <s), where
m OPs = U, OP; and <s a partial order on OPs such that <sC U ; <;.

m Let p, g € OPs, where p and g belong to distinct transactions, however access
the same data object. If p or g is a write action, then either p <s g or g <s p

Schedules

m A schedule of T is a prefix of a history.
51 = RHA WA RzA RiB WiB R, A WLA W3B R,B WHLB
S = RHA WA RsA RiB WiB R, A WLA W3B R,B WHLB
53 = R3A RRA W1A RiB Wi B R,A WHLA R,B WoB W3B
B A schedule is called serial, if it is not interleaved.
S4 = RsA W3B RiA W1A RiB WiB RoRA WL,A RoB W,LB

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10. Distributed Concurrency Contol

Serializability

A schedule is called (conflict-)serializable," if there exists a (conflict-)equivalent serial
schedule over the same set of transactions.

Conflict graph

The conflict graph of a schedule S is given as G(S) = (V, E), where V is the set of
transactions in S and the set of edges E is given by the conflicts in S: T; — T; € E, iff
there are conflicting actions p € OP;, g € OP; and p <s q.

mS=... WA...RA... = T, — T; € E, if there is no other write-action to A
between W;A und R;Ain S.

mS=.. WA.. WA... = T, = T; € E, if there is no other write-action to A
between W;A und W;A in S.

] §: . RA...WA... = T;— T, € E, if there is no other write-action to A
between R;A und W;A in S.

Serializability Testing

A schedule is serializable iff its conflict graph is acyclic.

1We consider only conflict-serializability and therefore talk about serializability in the
sequel, for short.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10. Distributed Concurrency Control

Example

Schedule 51: RIA W1A R3A RlB WlB R2A W2A W3B RQB WQB
Schedule 52: R3A R1A W1A RlB WlB R2A W2A R2B W2B WgB

/ 2 / Tz
T T1\
S1 T, S2 T,

S; is serializable, S; is not.

To exclude not serializable schedules, a so called transaction manager enforces certain
transaction behaviour.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10. Distributed Concurrency Control

2-Phase Locking (2PL)

m Serializable schedules are guaranteed, if all transactions obey the 2PL-protocol:

m For each transaction T, each RA and WA has to be surrounded by a lock/unlock
pair LA, UA:

T=...R/WA...= T=..LA...R/WA...UA...

m For each A read or written in T there exists at most one pair LA and UA.
B In any schedule S, the same object A cannot be locked at the same time by more
than one transaction:

SZ...L,‘A...LJ'A‘..:>S=...L,'A...U,‘A...LJ‘A...

m For each T and any LA;, UA; there holds: T = ...LA; ... UA>
— No more locking after the first unlock!

m Every schedule according to 2PL is serializable, however

m Not every serializable schedule can be produced by 2PL.
m Deadlocks may occur.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

~ |
Afomainkm
2 A
Q
5 Y J'Releaselock
° A
2
E A
3
< A
4
A
Y .
BEGIN LOCK END Transaction
POINT duration

Distributed Applications and Data Mana, Prof. Dr. Peter Fischer

Distributed Systems Part 2

Example 1

T1 = L1A RiA LB UiA WiB Ui B,
T = LA RA WZA URA,
T: = L3C R3C UsC.

S=LARA LB UA LA RRA L3C RsC UsC WiB UiB WLA U>A

Example 2

T1 = L1iA RiA LB UiA WiB Ui B,
T = LA RRA WLA URA,
T: = L3C R3C UsC.

S =LA RA LB UA LA RA L3C R3C UsC WiB UiB W>A U:A

The lock point of a transaction using 2PL is given by the first unlock of the
transaction.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

2PL guarantees serializability of schedules.

Let S be a schedule of a set of 2PL-transactions 7 = {Tx,..., Tn}.

Assume, S is not serializable, i.e. the conflict graph G(S) is cyclic, where w.l.0.g.
Th > Ty — -+ — T — Ty

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10. Distributed Concurrency Contol

2PL guarantees serializability of schedules.

Let S be a schedule of a set of 2PL-transactions 7 = {Tx,..., Tn}.

Assume, S is not serializable, i.e. the conflict graph G(S) is cyclic, where w.l.0.g.
Th > Ty — -+ — T — Ty

m Each edge T — T’ implies T and T’ having conflicting actions, where the action of T
preceds the one of T'.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

2PL guarantees serializability of schedules.
Let S be a schedule of a set of 2PL-transactions 7 = {Tx,..., Tn}.

Assume, S is not serializable, i.e. the conflict graph G(S) is cyclic, where w.l.0.g.
Th > Ty — -+ — T — Ty

m Each edge T — T’ implies T and T’ having conflicting actions, where the action of T
preceds the one of T'.

m Because of surrounding actions by lock/unlock and the 2PL-rule, T’ can execute its
action only after the lock-point of T. This implies the following structure of S, where

Ai,..., A are data items:
S=...U1A;... LA ...,
5:~'~Uk71Ak71~~~LkAk71~~~7
S=...UAx...LiAi

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

2PL guarantees serializability of schedules.
Let S be a schedule of a set of 2PL-transactions 7 = {Tx,..., Tn}.

Assume, S is not serializable, i.e. the conflict graph G(S) is cyclic, where w.l.0.g.
Th > Ty — -+ — T — Ty

m Each edge T — T’ implies T and T’ having conflicting actions, where the action of T
preceds the one of T'.

m Because of surrounding actions by lock/unlock and the 2PL-rule, T’ can execute its
action only after the lock-point of T. This implies the following structure of S, where

Ai,..., A are data items:
S=...U1A;... LA ...,
5:~'~Uk71Ak71~~~LkAk71~~~7
S=...UAx...LiAi

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

2PL guarantees serializability of schedules.
Let S be a schedule of a set of 2PL-transactions 7 = {Tx,..., Tn}.

Assume, S is not serializable, i.e. the conflict graph G(S) is cyclic, where w.l.0.g.
Th > Ty — -+ — T — Ty

m Each edge T — T’ implies T and T’ having conflicting actions, where the action of T
preceds the one of T'.

m Because of surrounding actions by lock/unlock and the 2PL-rule, T’ can execute its
action only after the lock-point of T. This implies the following structure of S, where

Ai,..., A are data items:
S=...UA1... LA ...,
5:~'~Uk71Ak71~~~LkAk71~~~7
S=.. . UAx...LiAi
m Let /1,..., /I, be the lock points of the involved transactions. Then we have /; before b,

..., Ix_1 before I, and I, before l;. However this is a contradiction to the structure of a
schedule. Therefore S is serializable.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10.2: Preliminaries of Distributed Concurrency Control

General reference architecture.

middle-

.
1 { 1
! oware | !
Ve e application logic :
1 ! 1

1

’

resource

\
! resource
manaﬁement 1 management

1

1

I

1

1

1

\ \
1 1
1 1
1 1
1 1
1 |
I i
1 I
1 1
1 1
’ v 7

~ - ~ - ~ -

Federated system

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

Sites and subtransactions

Let be given a fixed number of sites across which the data is distributed.
The server at site /, 1 <7 < n is responsible for a (finite) set D; of data
items. The corresponding global database is given as D = U?_; D;.

Data items are not replicated; thus D; N D; =0, i # j.

Let T ={Ti,..., Tm} be a set of transactions, where T; = (OP;, <;),
1<i<m.

Transaction T; is called global, if its actions are running at more than one
server; otherwise it is called local.

The part of a transaction T; being executed at a certain site j is called
subtransaction and is denoted by Tj;.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

Parallelism as prerequisite for distributed execution

m Basic definitions of transactions (and most visualizations) assume a total
order.

m This is insufficient to express distributed execution of a transaction:
Fine-grained coordination needed

m Relaxed model needed: partial ordering among operations

Formal definition:
A transaction T is defined as (OP, <)

OP is a finite set of T's actions RX and WX, where X is a data item.

< C OP x OP is a partial order on OP which fulfills the following properties:
m Each data item is read and written by T at most once.

m If p is a read action and g is a write actions of T and both access the same data item,
then p < q.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

A parallel debit/credit transaction. b: BEGIN; c: COMMIT.

When transactions are depicted as directed graphs, we omit transitive edges.

Two parallel debit/credit transactions, each prepared for parallel execution.

-y

o

~
*I:{‘("
/__,,

N
3
<«
»
3
3

e
«—&

A

3
=
SN

\
o

== Definition of a schedule? Definition of serializability?

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10. Distributed Concurrency Control

Two parallel debit/credit transactions, each prepared for parallel execution.

o
I
’ h 1 1
/ Yy \b oy
PA 7 i PA \
I’ { \\ l‘\\ I‘ I\
/ \
/ £ fAA N
: i
{ RA{fRB iPB { RAYY RB \PB
i i i i VA \
\ W i 1 VA i
1 1 ! 1 1 1 1
\ W i \ [1
\ W i i [H
A I ! \ [!
L1 \ ’ '
\wa e S WA fwe
\ '~ v
\) X/ /
Y ! 7
\ ;¥ '3 7
\ N /
\ \ { /
\ ¢ ./ \¢ /

i "o/

Transaction T3 Transaction T

Locally observable schedules of the two transactions when executed in parallel by CPU PA and
CPU PB.

0 PA: RiA WiA RoA WhA
Y PB: RiB WiB R,B W,)B
(i) PA: RiA WiA RA WhA
' PB: R,BW.B RiB WiB

On each CPU in both cases the local schedules are serializable - however, globally, in the
second case the transactions are not executed in a serializable manner!

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10. Distributed Concurrency Control

A schedule/history of the two parallel debit/credit transactions.

T1 T2

~__—

The schedule is not serializable
as its conflict graph is cyclic.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10. Distributed Concurrency Control

Local and global schedules

We are interested in deciding whether or not the execution of a set of transactions is
serializable or not.

m At the local sites we can observe an evolving sequence of the respective
transactions’ actions.

m We would like to decide whether or not all these locally observable sequences
imply a (globally) serializable schedule.

m However, on the global level we cannot observe an evolving sequence, as there
does not exist a notion of global physical time.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

Example
Schedule:

Site 1 (PA): RiIA WA R,A WLA

Observed local schedules: Site 2 (PB) : R,B WsB RiB W4B

Can schedules be represented as action sequences, as well?

... yes, we call them global schedules.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

From now on local and global schedules are sequences of actions!

Let 7 ={T1,..., Tm} be a set of transactions being executed at n sites. Let

Si,..., S, be the corresponding local schedules.

A global schedule of T with respect to S1,...,S, is any sequence S of the actions of
the transactions in T, such that its projection onto the local sites equals the
corresponding local schedules S, ..., S,.

Example

Consider local schedules S = R1A W5A and S, = WiB Ry B.

S:RIAWIB W>A Ry B

Global schedules: S' RIA WiB RyB WhA

Not a global schedule: S” : RiA R,B W1B W,A

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

10. Distributed Concurrency Control

Examples where there does not exist a serializable global schedule

m 71 = RIAWB, T = R,C W,A are global transactions and T3 = R3B W3C is a local
transaction.

S1: RIA WhA
S R3B WiB R,C WsC
Note, in S, subtransactions Ti2 and Ty have no confliciting actions!
m T3 = RARD und T, = RB RC are global transactions, while T3 = RA RB WA WB and
T4+ = RD WD RC WC are local transactions.
S RIA R3A R3:B W3A W3B R:B
S: ReD WD RiD R,C R, C W,C
Note, both global transactions are only reading and, in particular, disjoint data sets!

In both examples the local schedules are serializable, however no serializable global schedule
exists.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

Serializability of global schedules

m As we do not have replication of data items, whenever there is a conflict in a
global schedule, the same conflict must be part of exactly one local schedule.

m Consequently, the conflict graph of a global schedule is given as the union of the
conflict graphs of the respective local schedules.

m In particular, given a set of local schedules, either all or none corresponding global
schedule is serializable.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

Examples

51 5 RlA WlA R2A W2A

" S: RB W,B RB WB
= 512 RlA WzA
S: RRsB WiB R,C WsC
0 51: R1A R3A R3B W3A W3B RQB

S: RD WoD RiD RC R,C W,C

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

Types of federation

m homogeneous federation:

Same services and protocols at all servers. Characterized by distribution
transparency: the federation is perceived by the outside world as if it were not
distributed at all.

m heterogenous federation:

Servers are autonomous and independent of each other; no uniformity of services
and protocols across the federation.

Interface to recovery

Every global transactions runs the 2-phase-commit protocol. By that protocol the
subtransactions of a global transaction synchronize such that either all subtransactions
commit, or none of them, i.e. all abort.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

