
11. Replication and Consistency Page 1

11. Replication and (Weaker) Consistency

Motivation

Reliable and high-performance computation on a single instance of a data object
is prone to failure.

Replicate data to overcome single points of failure and performance bottlenecks.

Problem: Accessing replicas uncoordinatedly can lead to different values for each
replica, jeopardizing consistency.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

11. Replication and Consistency Page 2

Basic architectural model

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

11. Replication and Consistency Page 3

Classification of replication approaches

Two orthogonal dimensions

Location of change:

Primary Copy: updates on a data item can only be performed on a single,
dedicated replica
Write Anywhere: updates can be performed on any replica

Propagation Speed

Immediate/Eager: At commit, all replicas contain the change
Delayed: only the modified replica contains the change at commit, the
others will receive the changes later

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

11. Replication and Consistency Page 4

Primary Copy replication model

Client

Client

RM

RM

RM
Front
end

Front
end

Primary

Backup

Backup

RM: Resource Manager

R/W

R

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

11. Replication and Consistency Page 5

Update anywhere replication model

Client Client

RM

RM

RM
Front
end

Front
end

RM: Resource Manager

R/W R/W

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

11. Replication and Consistency Page 6

Tradeoffs of application approaches

Overall Tradeoffs

Location of change:

Primary Copy: Simple synchronization
Write Anywhere: flexible, no single bottleneck

Propagation Speed

Immediate/Eager: strongly consistent, potentially long response times
Delayed/Lazy: fast response time, consistency problems

Method-Specific Tradeoffs

Primary/Eager: resource contention on querying/updating/replication;
strong consistency with simple implementation (e.g., with 2PC+local 2PL)

Write anywhere/Eager: potentially prone to distributed deadlocks

Primary/Lazy: typically fast (if not on multiple sites), outdated data

Write anywhere/Lazy: fast, serializability not guaranteed

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

11. Replication and Consistency Page 7

Tradeoffs of application approaches

Overall Tradeoffs

Location of change:

Primary Copy: Simple synchronization
Write Anywhere: flexible, no single bottleneck

Propagation Speed

Immediate/Eager: strongly consistent, potentially long response times
Delayed/Lazy: fast response time, consistency problems

Method-Specific Tradeoffs

Primary/Eager: resource contention on querying/updating/replication;
strong consistency with simple implementation (e.g., with 2PC+local 2PL)

Write anywhere/Eager: potentially prone to distributed deadlocks

Primary/Lazy: typically fast (if not on multiple sites), outdated data

Write anywhere/Lazy: fast, serializability not guaranteed

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

11. Replication and Consistency Page 8

Synchronous replication protocols (basic)

ROWA

Write the change to all replicas

Read on (any) single replica

Expensive write coordination (2PC)

Cheap, highly available reads

Low write availability (lower than without replication)

Primary Copy

Write the change initially to single replica

Propagate changes in bulk to other replicas

Coordination with read locks: request from primary

Reduce write cost

Increased read cost

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

11. Replication and Consistency Page 9

Synchronous replication protocols (basic)

ROWA

Write the change to all replicas

Read on (any) single replica

Expensive write coordination (2PC)

Cheap, highly available reads

Low write availability (lower than without replication)

Primary Copy

Write the change initially to single replica

Propagate changes in bulk to other replicas

Coordination with read locks: request from primary

Reduce write cost

Increased read cost

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

11. Replication and Consistency Page 10

Quorum-Based Protocols

Idea: Clients have to request and acquire the permission of multiple servers before
either reading or writing a replicated data item.

Assume an object has N replicas.

For update, a client must first contact at least N
2

+ 1 servers and get them
to agree to do the update. Once they have agreed, all contacted servers
process the update assigning a new version number to the updated object.
For read, a client must first contact at least N

2
+ 1 servers and ask them to

send the version number of their local version. The client will then read the
replica with the highest version number.

This approach can be generalized to an arbitrary read quorum NR and write
quorum NW such that holds:

NR + NW > N,
NW > N

2
.

This approach is called quorum consensus method.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

11. Replication and Consistency Page 11

Example

(a) Correct choice of read and write quorum.

(b) Choice running into possible inconsistencies.

(c) ROWA by quorum

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

11. Replication and Consistency Page 12

CAP Theorem

From the three desirable properties of a distributed shared-data system:

atomic data consistency (i.e. operations on a data item look as if they were
completed at a single instant),

system availability (i.e. every request received by a non-failing node must result in
a response), and

tolerance to network partition (i.e. the system is allowed to lose messages),

only two can be achieved at the same time at any given time.

=⇒ Given that in distributed large-scale systems network partitions cannot be avoided,
consistency and availability cannot be achieved at the same time.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

11. Replication and Consistency Page 13

Two basic options:

Distributed ACID-transactions:

Consistency has priority, i.e. updating replicas is part of the transaction - thus
availability is not guaranteed.

Large-scale distributed systems:

Availability has priority - thus a weaker form of consistency is accepted, accpeting
access to outdated replicas

=⇒ Inconsistent updates may happen and have to be resolved on the application
level, in general.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

11. Replication and Consistency Page 14

Eventual Consistency

Specific form of weak consistency

Guarantees

if no new updates are made to the object
eventually all accesses will return the last updated value

Probabilistic inconsistency window duration, impacted

failures occur,
communication delays
the load on the system,
the number of replicas involved

Originally popular in large-scale, no-DB systems (DNS)

Major factor the NoSQL movement

Is this the end of the consistency story?

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

11. Replication and Consistency 11.1. Classifying Strong Consistency Models Page 15

Serializability and Eventual Consistency are (almost) at the extreme end of
the spectrum

Is there anything in between that would provide practically useful
combinations of consistency and availability?

In fact, there is wide of consistency models proposed in various
communities

Database transaction models
Distributed systems single object models

The CAP theorem does not talk about serializability, but linearizability

Let’s survey the space

There is recent work that structures the space and makes proofs around the
availability classes

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

11. Replication and Consistency 11.1. Classifying Strong Consistency Models Page 16

Overview on Consistency

We have a system with state and operations on the state

Operations form a history

Consistency models determine which histories are permissible

Simplest model: cpu register

Instant application
strict order

Challenges

Concurrent histories
Propagation delay

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

11. Replication and Consistency 11.1. Classifying Strong Consistency Models Page 17

Database Consistency: Anomalies (1)

Dirty Writes

w1X ...w2X ...(c1 or a1)

Dirty Read

w1X ...r2X ...(c1 or a1)

Lost Update

r1X ...w2X ...w1X (c1)

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

11. Replication and Consistency 11.1. Classifying Strong Consistency Models Page 18

Database Consistency: Anomalies (2)

Fuzzy Read

r1X ...w2X ...r1X (c1 or a1)

Phantom

r1[P]...w2[yinP]...r1X (c1 or a1)

Write Skew

r1X ...r2Y ...w1Y ...w2X ...c1c2

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

11. Replication and Consistency 11.1. Classifying Strong Consistency Models Page 19

Database Consistency Classes

ANSI SQL classes

Prevent typical anomalies from happening

Read Uncomitted:

Read Committed:

Repeatable Read:

Serializable:

Modelled around typical locking strategies

Other classes

Cursor Stability:

Snapshot Isolation:

Perform all reads and writes on a snapshot created at ts
At commit, check if any change by other TA on modified objects since ts

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

11. Replication and Consistency 11.1. Classifying Strong Consistency Models Page 20

Database Consistency: Classification

Serializable == Degree 3 == {Date, DB2} Repeatable Read

Degree 0

Read Committed == Degreee 2

Snapshot
IsolationRepeat able Read

Cursor Stability

Read Uncommitted == Degree 1

P0

P1

P3

P2

P4C
A3, A5A, P4

A5B
A5B

A3Oracle
Consistent
Read

P2

P4C

Figure 2: A diagram of the isolation levels and their rela-
tionships. It assume that the ANSI SQL isolation levels
have been strengthened to match the recommendation of
Remark 5 and Table 3. The edges are annotated with the
phenomena that differentiate the isolation levels. Not
shown is a potential multi-version hierarchy extending
Snapshot Isolation to lower degrees of isolation by
picking read timestamps on a per-statement basis. Nor
does it show the original ANSI SQL isolation levels based
on the strict interpretation of the phenomenon P1, P2, and
P3.

Snapshot Isolation’s "optimistic" approach to concurrency
control has a clear concurrency advantage for read-only
transactions, but its benefits for update transactions is still
debated. It probably isn’t good for long-running update
transactions competing with high-contention short transac-
tions, since the long-running transactions are unlikely to be
the first writer of everything they write, and so will proba-
bly be aborted. (Note that this scenario would cause a real
problem in locking implementations as well, and if the so-
lution is to not allow long-running update transactions that
would hold up short transaction locks, Snapshot Isolation
would also be acceptable.) Certainly in cases where short
update transactions conflict minimally and long-running
transactions are likely to be read only, Snapshot Isolation
should give good results. In regimes where there is high
contention among transactions of comparable length,
Snapshot Isolation offers a classical optimistic approach,
and there are differences of opinion as to the value of this.

4.3 Other Multi-Version Systems

There are other models of multiversioning. Some commer-
cial products maintain versions of objects but restrict
Snapshot Isolation to read-only transactions (e.g., SQL-92,
Rdb, and SET TRANSACTION READ ONLY in some other
databases [MS, HOB, ORA]; Postgres and Illustra [STO,
ILL] maintain such versions long-term and provide time-
travel queries). Others allow update transactions but do not
provide first-committer-wins protection (e.g., Oracle Read
Consistency isolation [ORA]).

Oracle Read Consistency isolation gives each SQL state-
ment the most recent committed database value at the time
the statement began. It is as if the start-timestamp of the
transaction is advanced at each SQL statement. The
members of a cursor set are as of the time of the Open
Cursor. The underlying mechanism recomputes the ap-
propriate version of the row as of the statement timestamp.
Row inserts, updates, and deletes are covered by Write locks
to give a first-writer-wins rather than a first-committer-wins
policy. Read Consistency is stronger than READ
COMMITTED (it disallows cursor lost updates (P4C)) but
allows non-repeatable reads (P3), general lost updates (P4),
and read skew (A5A). Snapshot Isolation does not permit
P4 or A5A.

If one looks carefully at the SQL standard, it defines each
statement as atomic. It has a serializable sub-transaction
(or timestamp) at the start of each statement. One can
imagine a hierarchy of isolation levels defined by assigning
timestamps to statements in interesting ways (e.g., in
Oracle, a cursor fetch has the timestamp of the cursor
open).

5. Summary and Conclusions

In summary, there are serious problems with the original
ANSI SQL definition of isolation levels (as explained in
Section 3). The English language definitions are ambigu-
ous and incomplete. Dirty Writes (P0) are not precluded.
Remark 5 is our recommendation for cleaning up the ANSI

Isolation levels to equate to the locking isolation levels of
[GLPT].

ANSI SQL intended to define REPEATABLE READ isolation
to exclude all anomalies except Phantom. The anomaly def-
inition of Table 1 does not achieve this goal, but the lock-
ing definition of Table 2 does. ANSI’s choice of the term
Repeatable Read is doubly unfortunate: (1) repeatable reads
do not give repeatable results, and (2) the industry had al-
ready used the term to mean exactly that: repeatable reads
mean serializable in several products. We recommend that
another term be found for this.

A number of commercially-popular isolation levels, falling
between the REPEATABLE READ and SERIALIZABLE
levels of Table 3 in strength, have been characterized with
some new phenomena and anomalies in Section 4. All the
isolation levels named here have been characterized as
shown in Figure 2 and Table 4, following. Isolation levels
at higher levels in Figure 2 are higher in strength (see the
Definition at the beginning of Section 4.1) and the connect-
ing lines are labeled with the phenomena and anomalies that
differentiate them.

On a positive note, reduced isolation levels for multi-ver-
sion systems have never been characterized before — despite
being implemented in several products. Many applications
avoid lock contention by using Cursor Stability or Oracle's
Read Consistency isolation. Such applications will find
Snapshot Isolation better behaved than either: it avoids the
lost update anomaly, some phantom anomalies (e.g., the

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

11. Replication and Consistency 11.1. Classifying Strong Consistency Models Page 21

DS Consistency Classes

Session Guarantees

Monotonic Reads: never return previous values

Monotonic writes: writes in session appear in order

Writes Follow Reads: happens-before on transactions

Sticky Session Guarantees

Read Your Writes: get your updated value (or later)

PRAM: serial execution within session (like RAM)

Causal consistency/PL-2L: PRAM+WFR

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

11. Replication and Consistency 11.1. Classifying Strong Consistency Models Page 22

Overall Consistency Classification

HA Read Uncommitted (RU), Read Committed
(RC), Monotonic Atomic View (MAV), Item
Cut Isolation (I-CI), Predicate Cut Isolation (P-
CI), Writes Follow Reads (WFR), Monotonic
Reads (MR), Monotonic Writes (MW)

Sticky Read Your Writes (RYW), PRAM, Causal
Unavailable Cursor Stability (CS)†, Snapshot Isolation (SI)†,

Repeatable Read (RR)†‡, One-Copy Serializ-
ability (1SR)†‡, Recency⊕, Safe⊕, Regular⊕,
Linearizability⊕, Strong 1SR†‡⊕

Table 3: Summary of highly available, sticky available, and un-
available models considered in this paper. Unavailable models are
labeled by cause of unavailability: preventing lost update†, prevent-
ing write skew‡, and requiring recency guarantees⊕.

I-CI

P-CIRC

RU

MAV

MR MWWFR RYW recency

safe

regular

linearizable

causal

PRAM

CS

RR

SI

1SR
Strong-1SR

Figure 2: Partial ordering of HAT, sticky available (in boxes, blue),
and unavailable models (circled, red) from Table 3. Directed edges
represent ordering by model strength. Incomparable models can be
simultaneously achieved, and the availability of a combination of
models has the availability of the least available individual model.

than a single-site database operating under weak isolation (par-
ticularly during network partitions). However, for a fixed isola-
tion level (which, in practice, can vary across databases and may
differ from implementation-agnostic definitions in the literature),
users of single-site database are subject to the same (worst-case)
application-level anomalies as a HAT implementation. The nec-
essary (indefinite) visibility penalties (i.e., the right side of Fig-
ure 2) and lack of support for preventing concurrent updates (via
the upper left half of Figure 2) mean HATs are not well-suited for
all applications (see Section 6): these limitations are fundamental.
However, common practices such as ad-hoc, user-level compen-
sation and per-statement isolation “upgrades” (e.g., SELECT FOR
UPDATE under weak isolation)—commonly used to augment weak
isolation—are also applicable in HAT systems (although they may
in turn compromise availability).

6 HAT Implications
With an understanding of which semantics are HAT-compliant,

in this section, we analyze the implications of these results for ex-
isting systems and briefly study HAT systems on public cloud in-
frastructure. Specifically:

1. We revisit traditional database concurrency control with a focus
on coordination costs and on high availability.

2. We examine the properties required by an OLTP application based
on the TPC-C benchmark.

3. We perform a brief experimental evaluation of HAT versus non-
HAT properties on public cloud infrastructure.

6.1 HA and Existing Algorithms
While we have shown that many database isolation levels are

achievable as HATs, many traditional concurrency control mech-
anisms do not provide high availability—even for HAT-compliant

isolation levels. Existing mechanisms often presume (or are adapted
from) single-server non-partitioned deployments or otherwise fo-
cus on serializability as a primary use case. In this section, we
briefly discuss design decisions and algorithmic details that pre-
clude high availability.

Serializability To establish a serial order on transactions, algo-
rithms for achieving serializability of general-purpose read-write
transactions in a distributed setting [14, 28] require at least one RTT
before committing. As an example, traditional two-phase locking
for a transaction of length T may require T lock operations and
will require at least one lock and one unlock operation. In a dis-
tributed environment, each of these lock operations requires coor-
dination, either with other database servers or with a lock service.
If this coordination mechanism is unavailable, transactions cannot
safely commit. Similarly, optimistic concurrency control requires
coordinating via a validation step, while deterministic transaction
scheduling [56] requires contacting a scheduler. Serializability un-
der multi-version concurrency control requires checking for update
conflicts. All told, the reliance on a globally agreed total order ne-
cessitates a minimum of one round-trip to a designated master or
coordination service for each of these classic algorithms. As we
saw in Section 2, is will be determined by the deployment environ-
ment; we will further demonstrate this in Section 6.3.

Non-serializability Most existing distributed implementations of
weak isolation are not highly available. Lock-based mechanisms
such as those in Gray’s original proposal [38] do not degrade grace-
fully in the presence of partial failures. (Note, however, that lock-
based protocols do offer the benefit of recency guarantees.) While
multi-versioned storage systems allow for a variety of transactional
guarantees, few offer traditional weak isolation (e.g., non-“tentative
update” schemes) in this context. Chan and Gray’s read-only trans-
actions have item-cut isolation with causal consistency and MAV
(session PL-2L [2]) but are unavailable in the presence of coordina-
tor failure and assume serializable update transactions [20]; this is
similar to read-only and write-only transactions more recently pro-
posed by Eiger [48]. Brantner’s S3 database [15] and Bayou [60]
can all provide variants of session PL-2L with high availability, but
none provide this HAT functionality without substantial modifica-
tion. Accordingly, it is possible to implement many guarantees
weaker than serializability—including HAT semantics—and still
not achieve high availability. We view high availability as a core
design consideration in future concurrency control designs.

6.2 Application Requirements
Thus far, we have largely ignored the question of when HAT se-

mantics are useful (or otherwise are too weak). As we showed in
Section 5, the main cost of high availability and low latency comes
in the inability to prevent Lost Update, Write Skew, and provide re-
cency bounds. To better understand the impact of HAT-compliance
in an application context, we consider a concrete application: the
TPC-C benchmark. In brief, we find that four of five transactions
can be executed via HATs, while the fifth requires unavailability.

TPC-C consists of five transactions, capturing the operation of
a wholesale warehouse, including sales, payments, and deliver-
ies. Two transactions—Order-Status and Stock-Level—are read-
only and can be executed safely with HATs. Clients may read stale
data, but this does not violate TPC-C requirements and clients will
read their writes if they are sticky-available. Another transaction
type, Payment, updates running balances for warehouses, districts,
and customer records and provides an audit trail. The transaction is
monotonic—increment- and append-only—so all balance increase
operations commute, and MAV allows the maintenance of foreign-
key integrity constraints (e.g., via UPDATE/DELETE CASCADE).

Which of them are (un-)available and why?

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

11. Replication and Consistency 11.1. Classifying Strong Consistency Models Page 23

Causes for unavailability

Preventing Lost Updates

Dectecting competing writes needs coordination

Preventing Write Skew

Generalization of Lost Updates

Recency Guarantess

Network splits may delay process arbitrarily long

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

11. Replication and Consistency 11.1. Classifying Strong Consistency Models Page 24

Causes for unavailability

Preventing Lost Updates

Dectecting competing writes needs coordination

Preventing Write Skew

Generalization of Lost Updates

Recency Guarantess

Network splits may delay process arbitrarily long

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

11. Replication and Consistency 11.1. Classifying Strong Consistency Models Page 25

Causes for unavailability

Preventing Lost Updates

Dectecting competing writes needs coordination

Preventing Write Skew

Generalization of Lost Updates

Recency Guarantess

Network splits may delay process arbitrarily long

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

	Replication and Consistency
	Classifying Strong Consistency Models

