
Algorithms and Data StructuresFabian Kuhn

Lecture 6

Binary Search Trees I

Algorithms and Data Structures

Fabian Kuhn

Algorithms and Complexity

Algorithms and Data StructuresFabian Kuhn

Dictionary: (also: maps, associative arrays)

• Manages a set of elements, where each element is represented by
a unique key

Operations

• create : creates a new empty dictionary

• D.insert(key, value) : inserts a new (key,value)-pair
– If there already exists an entry for key, the old entry is replaced

• D.find(key) : returns entry for the given key
– If such an entry exists (otherwise a default value is returned)

• D.delete(key) : deletes the entry for the given key

Can be implemented with hash tables in (amortized) constant time!

2

Abstract Data Types : Dictionary

Algorithms and Data StructuresFabian Kuhn

Dictionary:

Additional possible operations:

• D.minimum() : returns smallest key in the data struture

• D.maximum() : returns largest key in the data structure

• D.successor(key) : returns next larger key

• D.predecessor(key) : returns next smaller key

• D.getRange(k1, k2) : returns all entries with keys in the
interval [k1,k2]

These operations cannot be implemented efficiently with
a hash table.

3

Abstract Data Types : Dictionary

Algorithms and Data StructuresFabian Kuhn

Search for key 19:

4

Binary Search Trees : Idea

2 3 4 6 9 12 15 17 19 24 27 2916 2018

Algorithms and Data StructuresFabian Kuhn

• Use the search tree of the binary search as data structure

5

Binary Search Trees : Idea

16

6 20

3 12 18 27

2 4 9 15 17 19 24 29

root

Algorithms and Data StructuresFabian Kuhn

TreeElement:

Implementation: in the same way as for list elements

6

Binary Search Tree : Elements

parent

key, value

left right

Algorithms and Data StructuresFabian Kuhn

• Binary search trees do not always need to be
nice and symmetric…

7

Binary Search Trees

Source: [CLRS]

Algorithms and Data StructuresFabian Kuhn 8

Find in a Binary Search Tree

Search for key 𝒙

• Use binary search
– That’s way it’s called a binary search tree …

Running time: 𝑂 depth of tree

current = root

while current is not None and current.key != x:

if current.key > x:

current = current.left

else:

current = current.right

At the end:

• Key 𝑥 not in the tree : current == None

• Key 𝑥 found : current.key == x

Algorithms and Data StructuresFabian Kuhn 9

Suche Minimum / Maximum

Find smallest element in a binary search tree

• All smaller elements are always
in the left subtree.

current = root

while current.left is not None:

current = current.left

Algorithms and Data StructuresFabian Kuhn

Ordering in tree: 𝑨 < 𝒛 < 𝑩 < 𝒚 < 𝑪 < 𝒙 < 𝑫 < 𝒘 < 𝑬

• If subtree 𝐷 exists, then
the successor of 𝑥 is the
smallest key in 𝐷.

• Otherwise, 𝑤 is the
successor.

10

Search for Successor

𝒚

𝒙

𝒛

𝒘

𝑨
𝑩

𝑫𝑪

𝑬

Algorithms and Data StructuresFabian Kuhn 11

Search for Successor

Find successor of a node 𝒖 (assumption: 𝑢 ≠ None)

if u.right is not None:
min in right subtree
current = u.right
while current.left is not None:

current = current.left

return current

else
find first node towards root s.t. u is in left subtree
current = u
parent = current.parent
while parent is not None and current == parent.right:

current = parent
parent = current.parent

return parent

Running time: 𝑂 depth of tree

Algorithms and Data StructuresFabian Kuhn 12

Search for Predecessor

Find predecessor of a node 𝒖 (assumption: 𝑢 ≠ None)

if u.left is not None:
max in left subtree
current = u.left
while current.right is not None:

current = current.right

return current
else

find first node towards root s.t. u is in right subtree
current = u
parent = current.parent
while parent is not None and current == parent.left:

current = parent
parent = current.parent

return parent

Running time: 𝑂 depth of tree

Algorithms and Data StructuresFabian Kuhn 13

Inserting a Key

Insert keys 5, 1, 14, 6.5, 19 …

𝟓𝟏 𝟏𝟒

𝟔. 𝟓 𝟏𝟗

Running time: 𝑂 depth of tree

Algorithms and Data StructuresFabian Kuhn 14

Inserting a key 𝑥 with value 𝑎

if root is None:
root = new TreeElement(x, a, None, None, None)

else:
current = root; parent = None
while current is not None and current.key != x:

parent = current
if x < current.key:

current = current.left
else:

current = current.right

if current is None:

if x < parent.key:
parent.left = new TreeElement(x, a, parent, None, None)

else:
parent.right = new TreeElement(x, a, parent, None, None)

else:
current.value = a

(key 𝑥 is not contained in tree)

binary search

(key 𝑥 is already contained, replace value)

key value parnet right childleft child

Algorithms and Data StructuresFabian Kuhn

Delete key 𝒙, simple cases:

• Key 𝑥 is in a leaf node 𝑢 of the tree
– leaf = node has no children

• Node with key 𝑥 has only 1 child

15

Deleting a Key I

𝒙

𝒘

𝒙

𝒘w.right = None w.left = None

𝒗

𝒘

𝒙

None 𝒗

𝒘

𝒙

None
delete 𝒙

𝒗

𝒘 w.left = v

Case, where 𝑥 is
the right child of 𝑤
is symmetric.

Algorithms and Data StructuresFabian Kuhn 16

Deleting a Key II

Delete key 𝒙, node has two children:

• Delete key 6:
15

6 18

17 2083

742 13

9

delete key 6

4

predecessor

7

successor

Algorithms and Data StructuresFabian Kuhn 17

Deleting a Key III

Delete key 𝒙, node has two children:

• Predecessor is largest key in left subtree.
– Predecessor has no right child.

• Successor is smallest key in right subtree.
– Successor has no left child.

• Write key and data of precedessor (or alternatively successor)
to the node of key 𝑥

• Delete predecessor / successor node
– Predecessor / successor is either a leaf or it has only one child.

Algorithms and Data StructuresFabian Kuhn 18

Deleting a Key IV

Delete key 𝒙:

1. Find node 𝑢 with 𝑢.key = 𝑥
– as usual, by using binary search

2. If 𝑢 does not have 2 children, delete node 𝑢
– Assumption: 𝑣 is parent of 𝑢, 𝑢 is left child of 𝑣 (other case is symmetric)

– If 𝑢 is a leaf, we do 𝑣.left = None

– If 𝑢 has one child 𝑤, we do 𝑣.left = 𝑤

3. If 𝑢 has two children, determine predecessor node 𝑣
– also works with successor node

4. Set 𝑢.key = 𝑣.key and 𝑢.data = 𝑣.data

5. Delete node 𝑣 (in the same way as deleting 𝑢 above)
– Node 𝑣 has at most 1 child!

Running time: 𝑂 depth of tree

Algorithms and Data StructuresFabian Kuhn

The operations
find, min, max, predecessor, successor, insert, delete

all have running time 𝑶 depth of tree .

What is the depth of a binary search tree?

19

Running Times Binary Search Tree

Worst Case: 𝚯(𝒏)

n

n-1

n-2

1

2

Best Case: 𝚯 𝐥𝐨𝐠𝒏
• max. #nodes in

depth 𝑘 is 2𝑘

• depth ≥ ⌊log2 𝑛⌋

Average Case: 𝚯 𝐥𝐨𝐠𝒏
• If the keys are inserted in random order, the

depth is 𝑂 log 𝑛

• typical case?

Algorithms and Data StructuresFabian Kuhn

1. Insert all element into a binary search tree

2. Read out the elements in sorted order
– Simplest solution: always find and delete minimum

– Or better: find minimum and afterwards 𝑛 − 1 times successor

Better solution: reading out all elements:

• Recursively:

1. Read out left subtree (recursively)

2. Read out root

3. Read out right subtree (recursively)

Running time for depth 𝑶 𝐥𝐨𝐠𝒏 :

• Insert: 𝑂 𝑛 ⋅ log 𝑛

• Read out: 𝑂 𝑛

20

Sorting with a Binary Search Tree

Algorithms and Data StructuresFabian Kuhn

Given: keys 𝑥min and 𝑥max (𝑥min ≤ 𝑥ma𝑥)

Goal: Output all keys 𝒙 with 𝒙𝐦𝐢𝐧 ≤ 𝒙 ≤ 𝒙𝐦𝐚𝐱.

getrange(u, xmin, xmax):

if u is not None:

if u.key > xmin:
getrange(u.left, xmin, xmax)

if (xmin <= u.key) and (u.key <= xmax):
add u to output

if u.key < xmax:

getrange(u.right, xmin, xmax)

• Assumption: #keys in range [𝑥min, 𝑥max] is equal to 𝑘

• Running time: certainly 𝑂 𝑛 and certainly also Ω(𝑘 + depth)

21

Reading Out a Part of the Elements

𝑥min 𝑥max

deal with subtree of u

Algorithms and Data StructuresFabian Kuhn

Given: keys 𝑥min and 𝑥max (𝑥min ≤ 𝑥ma𝑥)

Goal: Output all keys 𝒙 with 𝒙𝐦𝐢𝐧 ≤ 𝒙 ≤ 𝒙𝐦𝐚𝐱.

22

Reading Out a Part of the Elements

𝑥min 𝑥max

root

Number of visited nodes:
• #grün = 𝒌
• #rot ≤ Tiefe
• #blau ≤ Tiefe

Running time: 𝑶(𝒌 + depth)

Algorithms and Data StructuresFabian Kuhn 23

Traversal of a Binary Search Tree

1

2

3

4

5

6

7

8

9

10

11

1

2

3

4 5

6

7

8

9

10 11

1 2

3

4

5

6

7

8 9

10

11 1

2 3

4 5 6 7

8 9 10

11

Goal: visit all nodes of a binary search tree once.

In-Order: Pre-Order:

Post-Order: Level-Order:

Algorithms and Data StructuresFabian Kuhn 24

Traversal of a Binary Search Tree

Depth First Search / DFS Traversal

Pre-Order: 15, 6, 3, 2, 4, 7, 13, 9, 18, 17, 20

In-Order: 2, 3, 4, 6, 7, 9, 13, 15, 17, 18, 20

Post-Order: 2, 4, 3, 9, 13, 7, 6, 17, 20, 18, 15

Breadth First Search / BFS Traversal

Level-Order: 15, 6, 18, 3, 7, 17, 20, 2, 4, 13, 9

• Does not work in the same way
⟹ we will afterwards look at this

recursively

Algorithms and Data StructuresFabian Kuhn

preorder(node):

if node is not None:

visit(node)

preorder(node.left)

preorder(node.right)

inorder(node):

if node is not None:

inorder(node.left)

visit(node)

inorder(node.right)

postorder(node):

if node is not None:

postorder(node.left)

postorder(node.right)

visit(node)
25

DFS Traversal

Algorithms and Data StructuresFabian Kuhn

• Does not work recursively as for DFS traversal

• Observations:
– The root of a subtree is always visited before its children

– If a node 𝑢 is visited before node 𝑣, then also the children of node 𝑢
are visited before the children of node 𝑣.

– Idea: Use a FIFO queue: when visiting 𝑢, then the children of 𝑢 are inserted
into the FIFO queue.

26

BFS Traversal

Algorithms and Data StructuresFabian Kuhn

• Does not work recursively as for DFS traversal

27

BFS Traversal

FIFO Queue:

𝟏𝟓𝟔𝟏𝟖𝟑𝟕𝟏𝟕𝟐𝟎𝟐𝟒𝟏𝟑𝟗

Algorithms and Data StructuresFabian Kuhn

• Does not work recursively as for DFS traversal

• Solution with a FIFO queue:
– When visiting a node, insert its children into a FIFO queue

BFS-Traversal:

Q = new Queue()

Q.enqueue(root)

while not Q.empty():

node = Q.dequeue()

visit(node)

if node.left is not None:

Q.enqueue(node.left)

if node.right is not None:

Q.enqueue(node.right)

28

BFS Traversal

Algorithms and Data StructuresFabian Kuhn

DFS Traversal:

• Each node is visited exactly once

• Time cost per node: 𝑂(1)

• Overall time for DFS traversal: 𝑶 𝒏

BFS Traversal:

• Each node is visited exactly once
– Cost per node is linear in the number of children, i.e., 𝑂 1 for binary trees

– Each node is inserted into the FIFO queue exactly once

• Cost per node: 𝑂 1

• Overall time for BFS traversal: 𝑶(𝒏)

29

Analysis Tree Traversal

Algorithms and Data StructuresFabian Kuhn

In-order traversal:

• Visits all elements of a binary search tree in sorted order

• Sorting:
1. Insert all elements

2. In-order traversal

• Observation: Order only depends on the set of elements (keys)
and not on the structure of the tree.

30

Application DFS Traversal I

Algorithms and Data StructuresFabian Kuhn 31

Application DFS Traversal II

8

left subtree right subtree

5

4

2

1 3

7

6

10

9 13

11

12

14

Pre-order traversal:

• From a pre-order traversal sequence, the tree can be
reconstructed uniquely (and efficiently).

• Useful to store a tree, e.g., in a file

Example: 8, 5, 4, 2, 1, 3, 7, 6, 10, 9, 13, 11, 12, 14

Algorithms and Data StructuresFabian Kuhn

Post-order traversal:

• Deleting a whole binary search tree

• First, one has to free the memory of the substrees before freeing
the memory of the root node.

delete-tree(node)

if (node != None)

delete-tree(node.left)

delete-tree(node.right)

delete node

32

Application DFS Traversal III

Algorithms and Data StructuresFabian Kuhn

Worst case running time of the operations
find, min, max, predecessor, successor, insert, delete:

𝑶 depth of tree

• In the best case, the depth is 𝐥𝐨𝐠𝟐 𝒏
– Definition depth: length of longest path from the root to a leaf

• In the worst case, the depth is 𝒏 − 𝟏

• In the average case, the depth is 𝑶 𝐥𝐨𝐠𝒏
– Average case here means a random insertion order

Next lecture: How can we guarantee that the depth of a binary
search tree is always 𝑂 log 𝑛 ?

33

Efficiency of a Binary Search Tree

