Algorithms and Data Structures

Lecture 6

Binary Search Trees |

FREIBURG

Z
=)

Fabian Kuhn
Algorithms and Complexity

Abstract Data Types : Dictionary

Dictionary: (also: maps, associative arrays)

 Manages a set of elements, where each element is represented by
a unique key

Operations
* create . creates a new empty dictionary

* D.insert(key, value) :inserts a new (key,value)-pair
— If there already exists an entry for key, the old entry is replaced

* D.find(key) : returns entry for the given key
— If such an entry exists (otherwise a default value is returned)

e D.delete(key) : deletes the entry for the given key

Can be implemented with hash tables in (amortized) constant time!

Fabian Kuhn Algorithms and Data Structures

Abstract Data Types : Dictionary
Dictionary:

Additional possible operations:

e D.minimum() : returns smallest key in the data struture
e D.maximum() : returns largest key in the data structure
e D.successor(key) : returns next larger key

e D.predecessor(key) :returns next smaller key

 D.getRange(kl, k2) :returns all entries with keys in the
interval [k1,k2]

These operations cannot be implemented efficiently with
a hash table.

Fabian Kuhn Algorithms and Data Structures

Binary Search Trees : ldea

Search for key 19:

2 3 4 6 9 12 15 16 17 18 19 20 24 27 29

Fabian Kuhn Algorithms and Data Structures

Binary Search Trees : Idea

 Use the search tree of the binary search as data structure

root

ﬁ 16\
\ett righg

6 20

LN N 5 N N

Fabian Kuhn Algorithms and Data Structures

Binary Search Tree : Elements

TreeElement: T

O

parent

key, value

left right
o Q

N\

Implementation: in the same way as for list elements

Fabian Kuhn Algorithms and Data Structures

Binary Search Trees

* Binary search trees do not always need to be
nice and symmetric...

Source: [CLRS]

Fabian Kuhn Algorithms and Data Structures

Find in a Binary Search Tree

Search for key x

* Use binary search
— That’s way it’s called a binary search tree ...

Running time: O (depth of tree)

current = root
while current is not None and current.key != x:
if current.key > x:
current = current.left
else:
current = current.right

At the end:
 Key x notinthe tree : current == None
* Key x found :current.key ==

Fabian Kuhn Algorithms and Data Structures

Suche Minimum / Maximum

Find smallest element in a binary search tree

e All smaller elements are always
in the left subtree.

current = root
while current.left is not None:
current = current.left

Fabian Kuhn Algorithms and Data Structures 9

Search for Successor
Orderingintree: A<z<B<y<(C<x<D<w<E

e |f subtree D exists, then .
the successor of x is the w
smallest key in D.

e Otherwise, wis the
Ssuccessor.

Fabian Kuhn Algorithms and Data Structures

Search for Successor

Find successor of a node u (assumption: u # None)

if u.right is not None:

min in right subtree
current = u.right

while current.left is not None:
current = current.left

return current
else

find first node towards root s.t. u is 1in left subtree
current = u

parent current.parent

while parent is not None and current == parent.right:
current = parent

parent current.parent

return parent

Running time: O (depth of tree)

Fabian Kuhn Algorithms and Data Structures

11

Search for Predecessor

Find predecessor of a node u (assumption: u # None)

if u.left is not None:
max in left subtree
current = u.left
while current.right is not None:
current = current.right

return current
else
find first node towards root s.t. u is 1in right subtree
current = u
parent current.parent
while parent is not None and current == parent.left:
current = parent
parent current.parent

return parent

Running time: O (depth of tree)

Fabian Kuhn Algorithms and Data Structures 12

Inserting a Key

Insert keys 5, 1, 14, 6.5, 19 ...

Running time: O (depth of tree)

Fabian Kuhn Algorithms and Data Structures

13

Inserting a key x with value a

key | value | parnet| leftchild || right child &
if root is None:
root = new TreeElement(x, a, None, None, None)

7 %
else:
current = root; parent = None
while current is not None and current.key != x:
parent = current
if x < current.key: — binary search
current = current.left
else:
current = current.right

—

if current is None: (key x is not contained in tree)

if x < parent.key:
parent.left = new TreeElement(x, a, parent, None, None)

else:
parent.right = new TreeElement(x, a, parent, None, None)

else:
current.value = a (key x is already contained, replace value)

Fabian Kuhn Algorithms and Data Structures 14

Deleting a Key |

Delete key x, simple cases:

 Key xisin aleaf node u of the tree
— leaf = node has no children

w.right = None w.left = None

* Node with key x has only 1 child

/}:} w.left = v

v

None v v None delete x

Case, where x is
the right child of w
is symmetric.

Fabian Kuhn Algorithms and Data Structures

Deleting a Key Il

Delete key x, node has two children:
* Delete key 6:

predecessor successor

Fabian Kuhn Algorithms and Data Structures

Deleting a Key llI

Delete key x, node has two children:
* Predecessor is largest key in left subtree.

— Predecessor has no right child.

e Successor is smallest key in right subtree.

— Successor has no left child.

* Write key and data of precedessor (or alternatively successor)
to the node of key x

* Delete predecessor / successor node
— Predecessor / successor is either a leaf or it has only one child.

Fabian Kuhn Algorithms and Data Structures

Deleting a Key IV

Delete key x:

1. Find node u with u.key = x
— asusual, by using binary search

2. If u does not have 2 children, delete node u
— Assumption: v is parent of u, u is left child of v (other case is symmetric)
— Ifuis aleaf, we do v.left = None
— If u has one child w, we do v.left = w

3. If u has two children, determine predecessor node v
— also works with successor node

4. Setu.key = v.key and u.data = v.data
5. Delete node v (in the same way as deleting u above)

— Node v has at most 1 child!

Running time: O (depth of tree)

Fabian Kuhn Algorithms and Data Structures

Running Times Binary Search Tree

The operations

find, min, max, predecessor, successor, insert, delete

all have running time O(depth of tree).

What is the depth of a binary search tree?

Worst Case: O(n)

Best Case: O(logn)
* max. #nodes in
depth k is 2%

* depth = |log, n|

Average Case: O(logn)
* |f the keys are inserted in random order, the
depth is O(logn)

e typical case?

Fabian Kuhn

Algorithms and Data Structures

Sorting with a Binary Search Tree

1. Insert all element into a binary search tree
2. Read out the elements in sorted order

— Simplest solution: always find and delete minimum
— Or better: find minimum and afterwards n — 1 times successor

Better solution: reading out all elements:

* Recursively:
1. Read out left subtree (recursively)
2. Read out root
3. Read out right subtree (recursively)

Running time for depth O(logn):
* Insert: O(n-logn)
e Readout: 0(n)

Fabian Kuhn Algorithms and Data Structures

Reading Out a Part of the Elements

Given: keys Xmin and Xmax (Xmin < Xmax)

Goal: Output all keys x with Xip < X < Xpax-

deal with subtree of u . ‘

Xmin Xmax

getrange(u, xmin, xmax):
if u is not None:

if u.key > xmin:
getrange(u.left, xmin, xmax)

if (xmin <= u.key) and (u.key <= xmax):
add u to output

if u.key < xmax:
getrange(u.right, xmin, xmax)

* Assumption: #keys in range [Xmin, Xmax] iS €qual to k

* Running time: certainly O(n) and certainly also Q(k + depth)

Fabian Kuhn Algorithms and Data Structures 21

Reading Out a Part of the Elements

Given: keys Xmin and Xmax (Xmin < Xmax)

Goal: Output all keys x with Xip < X < Xpax-

root

S, —
! !

Xmin Xmax

Number of visited nodes:
e #igrin = k

e H#rot < Tiefe

e #blau < Tiefe

Running time: O(k + depth)

Fabian Kuhn Algorithms and Data Structures 22

Traversal of a Binary Search Tree

Goal: visit all nodes of a binary search tree once.

In-Order: 8

G
v

Fabian Kuhn Algorithms and Data Structures 23

Traversal of a Binary Search Tree

Depth First Search / DFS Traversal
Pre-Order: 15,6,3,2,4,7,13,9,18,17,20 |

In-Order: 2,3,4,6,7,9,13,15,17,18,20 recursively

Post-Order: 2,4,3,9,13,7,6,17,20,18,15 _
Breadth First Search / BFS Traversal

Level-Order: 15, 6, 18, 3, 7,17, 20, 2,4, 13,9

 Does not work in the same way
—> we will afterwards look at this

Fabian Kuhn Algorithms and Data Structures 24

DFS Traversal

preorder(node):
if node is not None:
visit(node)
preorder(node.left)
preorder(node.right)

inorder(node):
if node is not None:
inorder(node.left)
visit(node)
inorder(node.right)

postorder(node):
if node is not None:
postorder(node.left)
postorder(node.right)
visit(node)

Fabian Kuhn Algorithms and Data Structures

BFS Traversal

* Does not work recursively as for DFS traversal
(1)

/\/_\=
177 M
I

& Y

v

.;;

b
\Z

\X@
e Observations: é

— The root of a subtree is always visited before its children

— If a node u is visited before node v, then also the children of node u
are visited before the children of node v.

— ldea: Use a FIFO gueue: when visiting u, then the children of u are inserted
into the FIFO queue.

Fabian Kuhn Algorithms and Data Structures

26

BFS Traversal

* Does not work recursively as for DFS traversal

FIFO Queue:

—> 913 4| 2|20/17| 7| 3 (18| 6|15

Fabian Kuhn Algorithms and Data Structures

BFS Traversal

* Does not work recursively as for DFS traversal

e Solution with a FIFO queue:
— When visiting a node, insert its children into a FIFO queue

BFS-Traversal:
Q = new Queue()
Q.enqueue(root)
while not Q.empty():
node = Q.dequeue()
visit(node)
if node.left is not None:
Q.enqueue(node.left)
if node.right is not None:
Q.enqueue(node.right)

Fabian Kuhn Algorithms and Data Structures

Analysis Tree Traversal

DFS Traversal:

* Each node is visited exactly once

* Time cost per node: 0(1)

* Overall time for DFS traversal: O(n)

BFS Traversal:
* Each node is visited exactly once

— Cost per node is linear in the number of children, i.e., 0(1) for binary trees
— Each node is inserted into the FIFO queue exactly once

* Cost per node: 0(1)
* Overall time for BFS traversal: 0(n)

Fabian Kuhn Algorithms and Data Structures

Application DFS Traversal |

In-order traversal:
* Visits all elements of a binary search tree in sorted order
* Sorting:

1. Insert all elements

2. In-order traversal

* Observation: Order only depends on the set of elements (keys)
and not on the structure of the tree.

Fabian Kuhn Algorithms and Data Structures

Application DFS Traversal |

Pre-order traversal:

 From a pre-order traversal sequence, the tree can be
reconstructed uniquely (and efficiently).

* Useful to store a tree, e.g., in a file
Example: 8, 5, 4, 2, 1, 3, 7, 6, 10, 9, 13, 11, 12, 14

left subtree right subtree

Fabian Kuhn Algorithms and Data Structures

Application DFS Traversal Il

Post-order traversal:
* Deleting a whole binary search tree

* First, one has to free the memory of the substrees before freeing
the memory of the root node.

delete-tree(node)
if (node != None)
delete-tree(node.left)
delete-tree(node.right)
delete node

Fabian Kuhn Algorithms and Data Structures

Efficiency of a Binary Search Tree

Worst case running time of the operations
find, min, max, predecessor, successor, insert, delete:

O(depth of tree)

* Inthe best case, the depth islog, n
— Definition depth: length of longest path from the root to a leaf

* Inthe worst case, the depthisn — 1

* Inthe average case, the depth is O(logn)

— Average case here means a random insertion order

Next lecture: How can we guarantee that the depth of a binary
search tree is always O (logn)?

Fabian Kuhn Algorithms and Data Structures

33

