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Abstract Data Types : Dictionary

Dictionary: (also: maps, associative arrays)

 Manages a set of elements, where each element is represented by
a unique key

Operations
* create . creates a new empty dictionary

* D.insert(key, value) :inserts a new (key,value)-pair
— If there already exists an entry for key, the old entry is replaced

* D.find(key) : returns entry for the given key
— If such an entry exists (otherwise a default value is returned)

e D.delete(key) : deletes the entry for the given key

Can be implemented with hash tables in (amortized) constant time!

Fabian Kuhn Algorithms and Data Structures



Abstract Data Types : Dictionary
Dictionary:

Additional possible operations:

e D.minimum() : returns smallest key in the data struture
e D.maximum() : returns largest key in the data structure
e D.successor(key) : returns next larger key

e D.predecessor(key) :returns next smaller key

 D.getRange(kl, k2) :returns all entries with keys in the
interval [k1,k2]

These operations cannot be implemented efficiently with
a hash table.
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Binary Search Trees : ldea

Search for key 19:

2 3 4 6 9 12 15 16 17 18 19 20 24 27 29
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Binary Search Trees : Idea

 Use the search tree of the binary search as data structure
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Binary Search Tree : Elements

TreeElement: T

O

parent

key, value

left right
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Implementation: in the same way as for list elements
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Binary Search Trees

* Binary search trees do not always need to be
nice and symmetric...

Source: [CLRS]
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Find in a Binary Search Tree

Search for key x

* Use binary search
— That’s way it’s called a binary search tree ...

Running time: O (depth of tree)

current = root
while current is not None and current.key != x:
if current.key > x:
current = current.left
else:
current = current.right

At the end:
 Key x notinthe tree : current == None
* Key x found :current.key ==
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Suche Minimum / Maximum

Find smallest element in a binary search tree

e All smaller elements are always
in the left subtree.

current = root
while current.left is not None:
current = current.left
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Search for Successor
Orderingintree: A<z<B<y<(C<x<D<w<E

e |f subtree D exists, then .
the successor of x is the w
smallest key in D.

e Otherwise, wis the
Ssuccessor.
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Search for Successor

Find successor of a node u (assumption: u # None)

if u.right is not None:

# min in right subtree
current = u.right

while current.left is not None:
current = current.left

return current
else

# find first node towards root s.t. u is 1in left subtree
current = u

parent current.parent

while parent is not None and current == parent.right:
current = parent

parent current.parent

return parent

Running time: O (depth of tree)
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Search for Predecessor

Find predecessor of a node u (assumption: u # None)

if u.left is not None:
# max in left subtree
current = u.left
while current.right is not None:
current = current.right

return current
else
# find first node towards root s.t. u is 1in right subtree
current = u
parent current.parent
while parent is not None and current == parent.left:
current = parent
parent current.parent

return parent

Running time: O (depth of tree)
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Inserting a Key

Insert keys 5, 1, 14, 6.5, 19 ...

Running time: O (depth of tree)
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Inserting a key x with value a

key | value | parnet| leftchild || right child &
if root is None:
root = new TreeElement(x, a, None, None, None)

7 %
else:
current = root; parent = None
while current is not None and current.key != x:
parent = current
if x < current.key: — binary search
current = current.left
else:
current = current.right

—

if current is None: (key x is not contained in tree)

if x < parent.key:
parent.left = new TreeElement(x, a, parent, None, None)

else:
parent.right = new TreeElement(x, a, parent, None, None)

else:
current.value = a (key x is already contained, replace value)
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Deleting a Key |

Delete key x, simple cases:

 Key xisin aleaf node u of the tree
— leaf = node has no children

w.right = None w.left = None

* Node with key x has only 1 child

/}:} w.left = v

v

None v v None delete x

Case, where x is
the right child of w
is symmetric.
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Deleting a Key Il

Delete key x, node has two children:
* Delete key 6:

predecessor successor
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Deleting a Key llI

Delete key x, node has two children:
* Predecessor is largest key in left subtree.

— Predecessor has no right child.

e Successor is smallest key in right subtree.

— Successor has no left child.

* Write key and data of precedessor (or alternatively successor)
to the node of key x

* Delete predecessor / successor node
— Predecessor / successor is either a leaf or it has only one child.
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Deleting a Key IV

Delete key x:

1. Find node u with u.key = x
— asusual, by using binary search

2. If u does not have 2 children, delete node u
— Assumption: v is parent of u, u is left child of v (other case is symmetric)
— Ifuis aleaf, we do v.left = None
— If u has one child w, we do v.left = w

3. If u has two children, determine predecessor node v
— also works with successor node

4. Setu.key = v.key and u.data = v.data
5. Delete node v (in the same way as deleting u above)

— Node v has at most 1 child!

Running time: O (depth of tree)
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Running Times Binary Search Tree

The operations

find, min, max, predecessor, successor, insert, delete

all have running time O(depth of tree).

What is the depth of a binary search tree?

Worst Case: O(n)

Best Case: O(logn)
* max. #nodes in
depth k is 2%

* depth = |log, n|

Average Case: O(logn)
* |f the keys are inserted in random order, the
depth is O(logn)

e typical case?

Fabian Kuhn
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Sorting with a Binary Search Tree

1. Insert all element into a binary search tree
2. Read out the elements in sorted order

— Simplest solution: always find and delete minimum
—  Or better: find minimum and afterwards n — 1 times successor

Better solution: reading out all elements:

* Recursively:
1. Read out left subtree (recursively)
2. Read out root
3. Read out right subtree (recursively)

Running time for depth O(logn):
* Insert: O(n-logn)
e Readout: 0(n)
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Reading Out a Part of the Elements

Given: keys Xmin and Xmax (Xmin < Xmax)

Goal: Output all keys x with Xip < X < Xpax-

deal with subtree of u . ‘

Xmin Xmax

getrange(u, xmin, xmax):
if u is not None:

if u.key > xmin:
getrange(u.left, xmin, xmax)

if (xmin <= u.key) and (u.key <= xmax):
add u to output

if u.key < xmax:
getrange(u.right, xmin, xmax)

* Assumption: #keys in range [Xmin, Xmax] iS €qual to k

* Running time: certainly O(n) and certainly also Q(k + depth)
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Reading Out a Part of the Elements

Given: keys Xmin and Xmax (Xmin < Xmax)

Goal: Output all keys x with Xip < X < Xpax-

root

S, —
! !

Xmin Xmax

Number of visited nodes:
e #igrin = k

e H#rot < Tiefe

e #blau < Tiefe

Running time: O(k + depth)
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Traversal of a Binary Search Tree

Goal: visit all nodes of a binary search tree once.

In-Order: 8

G
v
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Traversal of a Binary Search Tree

Depth First Search / DFS Traversal
Pre-Order: 15,6,3,2,4,7,13,9,18,17,20 |

In-Order: 2,3,4,6,7,9,13,15,17,18,20  recursively

Post-Order: 2,4,3,9,13,7,6,17,20,18,15 _
Breadth First Search / BFS Traversal

Level-Order: 15, 6, 18, 3, 7,17, 20, 2,4, 13,9

 Does not work in the same way
—> we will afterwards look at this
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DFS Traversal

preorder(node):
if node is not None:
visit(node)
preorder(node.left)
preorder(node.right)

inorder(node):
if node is not None:
inorder(node.left)
visit(node)
inorder(node.right)

postorder(node):
if node is not None:
postorder(node.left)
postorder(node.right)
visit(node)
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BFS Traversal

* Does not work recursively as for DFS traversal
(1)
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e Observations: é

— The root of a subtree is always visited before its children

— If a node u is visited before node v, then also the children of node u
are visited before the children of node v.

— ldea: Use a FIFO gueue: when visiting u, then the children of u are inserted
into the FIFO queue.
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BFS Traversal

* Does not work recursively as for DFS traversal

FIFO Queue:

—> 913 4| 2|20/17| 7| 3 (18| 6|15
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BFS Traversal

* Does not work recursively as for DFS traversal

e Solution with a FIFO queue:
— When visiting a node, insert its children into a FIFO queue

BFS-Traversal:
Q = new Queue()
Q.enqueue(root)
while not Q.empty():
node = Q.dequeue()
visit(node)
if node.left is not None:
Q.enqueue(node.left)
if node.right is not None:
Q.enqueue(node.right)
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Analysis Tree Traversal

DFS Traversal:

* Each node is visited exactly once

* Time cost per node: 0(1)

* Overall time for DFS traversal: O(n)

BFS Traversal:
* Each node is visited exactly once

— Cost per node is linear in the number of children, i.e., 0(1) for binary trees
— Each node is inserted into the FIFO queue exactly once

* Cost per node: 0(1)
* Overall time for BFS traversal: 0(n)
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Application DFS Traversal |

In-order traversal:
* Visits all elements of a binary search tree in sorted order
* Sorting:

1. Insert all elements

2. In-order traversal

* Observation: Order only depends on the set of elements (keys)
and not on the structure of the tree.
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Application DFS Traversal |

Pre-order traversal:

 From a pre-order traversal sequence, the tree can be
reconstructed uniquely (and efficiently).

* Useful to store a tree, e.g., in a file
Example: 8, 5, 4, 2, 1, 3, 7, 6, 10, 9, 13, 11, 12, 14

left subtree right subtree

Fabian Kuhn Algorithms and Data Structures



Application DFS Traversal Il

Post-order traversal:
* Deleting a whole binary search tree

* First, one has to free the memory of the substrees before freeing
the memory of the root node.

delete-tree(node)
if (node != None)
delete-tree(node.left)
delete-tree(node.right)
delete node
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Efficiency of a Binary Search Tree

Worst case running time of the operations
find, min, max, predecessor, successor, insert, delete:

O(depth of tree)

* Inthe best case, the depth islog, n
— Definition depth: length of longest path from the root to a leaf

* Inthe worst case, the depthisn — 1

* Inthe average case, the depth is O(logn)

— Average case here means a random insertion order

Next lecture: How can we guarantee that the depth of a binary
search tree is always O (logn)?
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