# Algorithmen und Datenstrukturen Sommersemester 2020 Musterlösung Übungsblatt 10 

Abgabe: Mittwoch, 22.07.2020, 16:00 Uhr.

## Aufgabe 1: Dijkstra's Algorithmus

(10 Punkte)
Gegeben sei ein Labyrinth dessen Kantenmenge eine Teilmenge eines $n \times n$ Gitters ist. D.h., jeder Gitterknoten hat maximal vier Kanten, jeweils höchstens zwei in horizontaler und in vertikaler Richtung. Eine horizontale Kante hat Kantengewicht 2, eine vertikale Kante hat Kantengewicht 1.
Wir nummerieren die $n^{2}$ Gitterknoten zeilenweise durch. Das Labyrinth sei gegeben durch eine Adjazenzliste $A$. Eintrag $A[i]$ enthält Tupel der Form $(j, w(i, j))$, wobei $j$ ein horizontal oder vertikal benachbarter Knoten und $w(i, j) \in\{1,2\}$ das Gewicht der Kante $\{i, j\}$ darstellt.
(a) Implementieren Sie einen Algorithmus der für eine solche Adjazenzliste und zwei Gitterknoten $s, t \in\left\{0, \ldots, n^{2}-1\right\}$ den kürzesten Pfad von $s$ zu $t$ im Labyrinth als Folge besuchter Gitterknoten in $\mathcal{O}\left(n^{2} \log n\right)$ Zeit ausgibt. Sie dürfen die Vorlage Maze.py sowie zuvor bereits verwendete Hilfsdatenstrukturen benutzen. Erklären Sie in Ihren erfahrungen.txt kurz warum Ihr Algorithmus die geforderte Laufzeit einhält.
(b) Wenden Sie Ihren Algorithmus auf die Adjazenzliste die als Textdatei in maze.txt gegeben ist und $s=0, t=899 \mathrm{an}$. Eine entsprechende Funktion um maze.txt einzulesen steht in Maze.py zur Verfügung. Wenden Sie die Funktion visualize_path auf Ihren Ergebnispfad an, schreiben Sie die Ausgabe in eine Datei solution_path.txt und geben Sie diese Datei mit ab.

## Musterlösung

(a) Siehe Maze.py in unserer Musterlösung. Dijkstra mit einem Min-Heap als Priority-Queue hat eine Laufzeit von $\mathcal{O}\left(n^{\prime}+m \log n^{\prime}\right)$ wobei $n^{\prime}$ der Anzahl der Knoten im Labyrinth entspricht. Da die Knoten im Labyrinth einem $n \times n$ Gitter entsprechen ist $n^{\prime} \in \mathcal{O}\left(n^{2}\right)$. Außerdem hat jeder Knoten maximal 4 inzidente Kanten im Gitter, und damit gilt $m \leq 4 n^{\prime} \in \mathcal{O}\left(n^{\prime}\right)=\mathcal{O}\left(n^{2}\right)$. Damit hat Dijkstra im Labyrinth die Laufzeit $\mathcal{O}\left(n^{\prime}+m \log n^{\prime}\right)=\mathcal{O}\left(n^{2}+n^{2} \log n^{2}\right)=\mathcal{O}\left(n^{2} \log n\right)$.
(b) Siehe Abbildung 1 oder maze_viz.txt.

## Aufgabe 2: Währungsarbitrage

## (10 Punkte)

Gegeben seien $n$ Währungen $w_{1}, \ldots, w_{n}$. Die Umrechungskurse der Währungen seien in einer $n \times n$ Matrix $A$ mit Einträgen $a_{i j}(i, j \in\{1, \ldots, n\})$ gegeben. Eintrag $a_{i j}$ ist der Umrechnungskurs von $w_{i}$ nach $w_{j}$, d.h. für eine Einheit von $w_{i}$ bekommt man $a_{i j}$ Einheiten von $w_{j}$.
Gegeben eine Währung $w_{i_{0}}$ möchte man herausfinden, ob es eine Folge $i_{0}, i_{1}, \ldots, i_{k}$ gibt, sodass man Gewinn macht, wenn man eine Einheit von $w_{i_{0}} \mathrm{zu} w_{i_{1}}$ tauscht, danach zu $w_{i_{2}}$ etc. bis zu $w_{i_{k}}$ und schließlich wieder zurück zu $w_{i 0}$.

(a) Formulieren Sie die Fragestellung als Graphproblem. Definieren Sie dazu einen geeigneten Graphen sowie eine Bedingung, welche der Graph genau dann erfüllt, wenn es eine Folge von Währungen wie oben beschrieben gibt.
(4 Punkte)
(b) Geben Sie einen Algorithmus an, welcher in $\mathcal{O}\left(n^{3}\right)$ Zeitschritten entscheidet, ob es eine Folge von Währungen wie oben beschrieben gibt. Begründen Sie Laufzeit und Korrektheit. (6 Punkte)
Hinweis: Es gilt $\log (a \cdot b)=\log a+\log b$

## Musterlösung

(a) Wir definieren einen gewichteten Graphen $G=(V, E, w)$ mit $V=\{1, \ldots, n\}, E=V^{2}$ (d.h. der Graph ist gerichtet und vollständig) und $w(i, j)=a_{i j}$ (d.h. $A$ entspricht der Adjazenzmatrix). Eine Folge von Währungen wie beschrieben gibt es genau dann, wenn es einen Kreis $\left(i_{0}, i_{1}, \ldots, i_{k}, i_{0}\right)$ gibt, so dass

$$
\begin{equation*}
\prod_{j=0}^{k-1} w\left(i_{j}, i_{j+1}\right) \cdot w\left(i_{k}, i_{0}\right)>1 \tag{1}
\end{equation*}
$$

(b) Wie ersetzen in der Adjazenzmatrix $a_{i j}$ durch $-\log a_{i j}$, d.h. wir definieren einen Graphen $G=$ $\left(V, E, w^{\prime}\right)$ mit $V$ und $E$ wie oben und $w^{\prime}(i, j)=-\log w(i, j)$. Wir wenden Bellman-Ford mit Startpunkt $i_{0}$ an. Dieser prüft, ob es einen negativen Kreis gibt, d.h. Knoten $i_{0}, \ldots, i_{k}$ mit

$$
\begin{aligned}
& \sum_{j=0}^{k-1} w^{\prime}\left(i_{j}, i_{j+1}\right)+w^{\prime}\left(i_{k}, i_{0}\right)<0 \\
\Longleftrightarrow & \sum_{j=0}^{k-1}-\log w\left(i_{j}, i_{j+1}\right)-\log w\left(i_{k}, i_{0}\right)<0 \\
\Longleftrightarrow & \sum_{j=0}^{k-1} \log w\left(i_{j}, i_{j+1}\right)+\log w\left(i_{k}, i_{0}\right)>0 \\
\Longleftrightarrow & \log \left(\prod_{j=0}^{k-1} w\left(i_{j}, i_{j+1}\right) \cdot w\left(i_{k}, i_{0}\right)\right)>0 \\
\Longleftrightarrow & \prod_{j=0}^{k-1} w\left(i_{j}, i_{j+1}\right) \cdot w\left(i_{k}, i_{0}\right)>1
\end{aligned}
$$

Das heißt der Algorithmus prüft, ob Bedingung (1) aus Teil (a) erfüllt ist. Die Laufzeit von Bellman-Ford ist $\mathcal{O}(|V| \cdot|E|)$. Mit $|V|=n$ und $|E|=n^{2}$ erhalten wir also die Laufzeit $\mathcal{O}\left(n^{3}\right)$.

