Algorithms and Data Structures
Conditional Course

Lecture 2

Runtime Analysis, Sorting Il

FREIBURG

Z
=)

Fabian Kuhn
Algorithms and Complexity

Runtime Analysis |

* How can we analyze the runtime of an algorithm?
— runtime is different on different computers...
— depends on compiler, programming language, etc.

* We need an abstract measure to express the runtime

e Idea: Count the number of (basic) operations
— instead of directly measuring the time
— the number of basic operations is independent of computer, compiler

— It is a good measure for the runtime if all basic operations require about the
same time.

Fabian Kuhn Algorithms and Data Structures

Basic Operations

What is a basic operation?

* Simple arithmetic operations / comparisons
— +,-, %/, % (mod), <, >, ==, ...

* One memory access

— reading or writing a variable
— not clear if this is really a basic operation?

* One function call
— Of course only jumping to the function code

* Intuitively: one line of program code
e Better: one line of assembly language code
* Even better (?): one processor cycle

 We will see: It is only important that the number of basic opertions
is roughly proportional to the actual running time.

Fabian Kuhn Algorithms and Data Structures

RAM Model

RAM = Random Access Machine

e Standard model to analyze algorithms!

* Basic operations (as “defined”) all require one time unit
* In particular, all memory accesses are equally expensive:

Each memory cell (1 machine word) can be read or written in 1
time unit

— In particular ignores memory hierarchies

— In most cases, it is however a reasonable assumption

* There are alternative abstract models:
— to explicitly capture memory hierarchies
— for huge data volumes (cf. big data)

e e.g.: streaming-models: memory has to be read sequentially
— for distributed / parallel architectures

* memory access can be local or over the network...

Fabian Kuhn Algorithms and Data Structures

Runtime analysis I

So far: Number of basic operations is proportional to the runtime

* We can also achieve this without counting the
basic operations exactly!

Simplification 1: We only calculate an upper bound (or a lower
bound) on the number of basic operations
— such that the upper / lower bound is still proportional to the runtime...

* No. of basic op. can depend on several properties of the input
— Size/length of input, but, e.g., for sorting also the ordering in the input

Simplification 2: Most important parameter is input size n
We always consider the runtime T'(n) as a function of n.
— And we ignore other properties of the input

Fabian Kuhn Algorithms and Data Structures

Selection Sort: Analysis

SelectionSort(A):

1:

for i=0 to n-2 do

2: minIdx = 1 <c
3: for j=1 to n-1 do
4: if A[j] < A[minIdx] then}@gc2
5: minIdx = j
6: swap(A[i], A[minIdx]) - < C3
#basicop. < c -\#inner for loop iterations}
x(Yn)
n-—2 n n 1
x(n) =y (n—1) =zhszh="("2+)

Fabian Kuhn

Algorithms and Data Structures

Selection Sort: Analysis

SelectionSort(A):

1: for i=0 to n-2 do

2: minIdx = 1 -« <c

3: for j=1 to n-1 do ,

. :) = Co

4: if A[j] < A[minIdx] then}::ij;

5 minIdx = J -

6: swap(A[i], A[minIdx]) - < C3

\#basic op. = ¢ -\#inner for loop iterations}
Y

T Y(n) x(n) < n?

Runtime T(n) < c¢ - n?

Fabian Kuhn Algorithms and Data Structures

Selection Sort: Analysis

T (n): Number of basic operations of Selection Sort algorithms for
arrays of lengthn

Lemma: There is a constant cy > 0, such that T(n) < cy - n*

Lemma: There is a constant ¢; > 0, such that T(n) > c; - n?

Fabian Kuhn Algorithms and Data Structures

Runtime analysis

Summary
 We can only obtain a value that is proportional to the runtime.

 However, we also do not want anything else:
— Analysis should be independent of computer / compiler / etc.
— We want to have statements that are valid in 10 / 100 /... years

* We will always get statements of the following form:

There is a constant C, such that
Tm)<C-f(n) or Tm)=C-f(n)

* The Big-O notation allows to simplify / generalize this kind of
statements...

Fabian Kuhn Algorithms and Data Structures

Big-O Notation

* Formalism to describe the asymptotic growth of functions.

— For formal definitions: see next slide...

 Thereisaconst.C > 0,s.t.T(n) < C - f(n) becomes:

T(n) € 0(f(n))

 Thereisaconst.C > 0,s.t.T(n) = C - g(n) becomes:
T(n) € Q(g(n))

 For Selection Sort:
T(n) € 0(n?)

2
rm) € 0(n?) T(n) € 0(n?)

Fabian Kuhn Algorithms and Data Structures

10

Big-O Notation : Definitions

0(gn)) ={f(n) |Fe,ng > 0Vn =n, : f(n) < c- g(n)}

* Function f(n) € 0(g(n)), if there are constants ¢ and n s. t.
f(n) <c-g)foralln = n,

Q(gm) ={fm) | 3c,ng >0Vn=ngy : f(n) = c- g(n)}

* Function f(n) € Q(g(n)), if there are constants ¢ and ng s. t.
f(n) =c-gmn)foralln = n,

6(g(m) = 0(g(m) n 2(g(m)

* Function f(n) € 0(g(n)), if there are constants c4, ¢, and n; s. t.
ci-gn) < f(n) <c,-gn)foralln = ny, resp. if

f(n) €0(n)and f(n) € Q(n)

Fabian Kuhn Algorithms and Data Structures 11

Big-O Notation : Definitions

o(gin)) ={f(n) |Ve>03any>0vn=ny: f(n) <c-gn)}

* Function f(n) € o(g(n)), if for all constants ¢ > 0, we have
f(n) < c- g(n) (for sufficiently large n, indep. of ¢)

w(gn)) ={f(n)|Vc>03Iny>0vn=ny: f(n) = c- g(n)}

* Function f(n) € w(g(n)), if for all constants ¢ > 0, we have
f(n) = c - g(n) (for sufficiently large n, indep. of ¢)

In particular:

fm)eo(gin)) = fn) eo(gn)
fMew(gn) = fn)elghn)

Fabian Kuhn Algorithms and Data Structures 12

Big-O Notation : Intuitively

f(n) € 0(g(m):
 f(n)" <" g(n), asymptotically...
* f(n) asymptotically grows at most as fast as g(n)

f(n) € (gn)):
¢ f(n)" =" g(n), asymptotically...
* f(n) asymptotically grows at least as fast as g(n)

f(n) € ©(g(n)):
« f(n)" ="g(n), asymptotically...
* f(n) asymptotically grows equally fast as g(n)

Fabian Kuhn Algorithms and Data Structures

13

Big-O Notation : Intuitively

f(n) € o(g(n)):
« f(n)" <" g(n), asymptotically...
* f(n) asymptotically grows slower than g(n)

f(n) € w(gn)):
« f(n)">"g(n), asymptotically...
* f(n) asymptotically grows faster than g(n)

If f(n) and g(n) grow monotonically, we have:

fm)eo(gin)) & fn) ¢ (gn)
fmew(gn) © fn)e¢o(gn)

Fabian Kuhn Algorithms and Data Structures

Definition by Limits (simplified)

The following definitions hold for monotonically growing functions

Fabian Kuhn

f(n) e 0(gm),
f(n) € Q(g(n)),
f(n) e 6(g(m)),
f(n) € o(g(m)),

f(n) € w(g(n)),

Algorithms an

f@)
Jim Sy <

@)
Jim

f(n)

0< lim——<
n—o g(n)

- f(n)
e g(m)
n-w g(n)

d Data Structures

Big-O Notation : Remarks

Writing Convention:

. O(g(n)), Q(g(n)), ... are sets (of functions)
 Correct way of writing (in principle): f(n) € O(g(n))
* Very common way of writing: f(n) = O(Q(n))
Examples:

e T(n) = 0(n?) instead T(n) € 0(n?)

e T(n) = Q(n?)instead T(n) € Q(n?)

¢ f(n)=n*+0(n):
f(n) € {g(n) : 3h(n) € 0(n) s.t.g(n) = n* + h(n)}

e a(n) = (1 + 0(1)) - b(n)

Fabian Kuhn Algorithms and Data Structures

Big-O Notation : Remarks

Writing Convention:

. O(g(n)), Q(g(n)), ... are sets (of functions)
 Correct way of writing (in principle): f(n) € O(g(n))
* Very common way of writing: f(n) = O(g(n))

Asymptotic Behavior of General Limits:
* Same notation is used more generally, e.g., f(x) forx = 0

e E.g., Taylorapprox.:e* =1+ x + 0(x?),ore* =1+ x + o(x)
_ 1 g"\ _ /N n gven

Alternative Definition for Q(g(n)): %(M Wy = {\ A odd

/

Q(gn)) = {f() |Ic,ng > 0Vn = ng: f(n) = c- g(n)}
Q(gn) ={f(n) |3c¢>0Vny >03In=ny: f(n) = c- g(n)}
— We will use the 15t definition

— The two definitions are only different for non-monotonic functions

Fabian Kuhn Algorithms and Data Structures 17

Big-O Notation : Examples

Selection Sort:

 Runtime T(n), there are constants ¢y, ¢, : c;n? < T(n) < ¢,n?

T(n) € 0(n?), T(n) € Q(n?), T(n) € O(n?)

* T(n) grows more than linearinn: T(n) € w(n)

en

Further examples: lim ~756 =
. _ 3 _ 3 .

f(n) = 10n3, g(n) =n3/1000 : f(n) € 6(9(n)) W
o f(n) — en, g(n) — nlOO . f(n) € a)(g(n)) _ gn) B log, n

2t/2

f(n) =n/logan, gln) =vn—f(n) € w(gn)) —
f(n) =nl/2%¢, g(n) = 10lnn : f(n) € w(g(n))
f(n) =logion, g(n) =logzn —-f(n) €6(g(m)) logion = ooy
 f) =n'"g(m) =27 - f() € o(g(m))

\ log(nV"*) = vn - logn,log(2™) = n

Fabian Kuhn Algorithms and Data Structures

Analysis Insertion Sort

InsertionSort(A):

1: for i = 1 to n-1 do

2 // prefix A[1..1] is already sorted

3 pos = 1

4: while (pos > ©) and (A[pos] < A[pos-1]) do
5 swap(A[pos], A[pos-1])

6 pos = pos - 1

Fabian Kuhn Algorithms and Data Structures

19

Worst case, best case, average case

Worst Case Analysis
* Analyze runtime T'(n) for a worst possible input of size n
* |Important / standard way of analyzing algorithms

Best Case Analyse
* Analyze runtime T'(n) for a best possible input of size n
e Usually not very interesting...

Average Case Analyse
* Analyze runtime T'(n) for a typical input of size n

* Problem: what is a typical input?
— Standard approach: use a random input
— Not clear, how close real inputs and random inputs are...
— Possible alternative: smoothed analysis (we will not look at this)

Fabian Kuhn Algorithms and Data Structures

How good is quadratic runtime?

Quadratic = 2x as large input = 4x as long runtime
— For large n, this already seems to grow quite fast...

Example calculation:

e Assume that the number of basic operations T(n) = n
* Additionally, assume there is 1 basic operation per processor cycle
* For a 1Ghz processor, we get 1 ns per basic operation

2

m 4 bytes per number Runtime T'(n)

103 numbers ~ 4KB 1032 .10 °s =1ms
10® nhumbers ~ 4MB 1092 .107%s = 16.7 min
10° numbers ~ 4GB 1092 -107° s = 31.7 years

too slow for large problems!

Fabian Kuhn Algorithms and Data Structures 21

Analysis Merge Sort

7 pivide N\

ﬁ Sort recursively
(by using mergesort)

N\ v

* Divide is trivial = cost 0(1)
* Recursive sorting: We will look at this...
 Merge: We will look at this first...

Fabian Kuhn Algorithms and Data Structures

22

Analysis Merge Step

MergeSortRecursive(A, start, end, tmp) // sort A[start..end-1]
5: pos = start; 1 = start; j = middle C> (
6: thile (pos < end) do s CC\
7: if (i < middle) and (A[i] < A[j]) then
8: tmp[pos] = A[i]; pos++; C)(()
9: else
10: tmp[pos] = A[]j]; pos++;
11: for i = start to end-1 do A[i] = tmp[i] —
UM Start middle g, f -1 O(L>
(X

]

| &JV/ audwe (L)
— =]

L/—\(—\—J
= eud - SJFW‘Q

Fabian Kuhn Algorithms and Data Structures

23

Analysis Merge Sort

Runtime T'(n) consists of:
e Divide and Merge: O(n)
« 2 recursive calls to sort [n/2] and [n/2] elements

Recursive formulation of T (n):
e Thereisaconstantb > 0, s. t.

ro <t () +r () +bn T =D

———

 We simplify a bit and ignore all the rounding:
n

T(n)SZ-T(Z

)+b-n, T(1) < b

asstud * U VW$ z

Fabian Kuhn Algorithms and Data Structures

24

Analysis Merge Sort

T(n)sz-T(§)+b-n, T(1) <b

Let’s just try and see what we get...
T €2 T2+ bn T2 T4 o5
ST T(F)+2b3+bn
=4 T(Z)+) b
$4(2TCR) + b-%)+2bu
=8 T(+ 2o AUESS

éZk'Tﬁk)* L b VO Se
cn T+ bg,ebn < bn(l 4 o)

Fabian Kuhn Algorithms and Data Structures

25

Analysis Merge Sort ~ T(w)= O(u- @5\0

Recursive equation: T(n) < 2-T (g) +b-n, T(1)<b
Guess: T(n) < b-n-(1+log,n) o

O

Proof by induction:

/
Base: pop TN b 1-(1+ By 10=b

olept /
n_ g 9
Tn) iH)Z T(2)+bn %)?ZZ % @
;<§Z<b%(%>>+w -

I,)
= hn @861/1 tbwn = bu(l +@%wa
— — @

Fabian Kuhn Algorithms and Data Structures

Alternative Analysis of Merge Sort

Recursive equation: T(n) < 2-T(=)+b-n, T(1) <b
2 f—

Consider the recursion tree:
/\Cv\\ < \D N

T

T(nA) T s ¢ ‘\D*V’z\:lom
/ ~—_
&2 () M) N N4 b grbw
N
(e 1(78) —— bv
‘ §& 1o
< TF(Q\ Zﬁm@

()
N ﬁ@gz(mﬂ a—bn

Fabian Kuhn Algorithms and Data Structures 27

Merge Sort Measurements

2000

Fabian Kuhn

1800

1600

1400

1200

1000

800

600

400

200

0

+

“mérgesc:ri_tx !

I
+

0

20000 40000 60000 80000 100000120000140000160000180000200000

Algorithms and Data Structures

28

Merge Sort Measurements

0.01

0.0095

0.009

0.0085

0.008

0.0075

0.007

0.0065

Fabian Kuhn

"mergesort txt" using 1-($2/$1) +

0 20000 40000 60000 8000010000012000014000016000018000200000

Algorithms and Data Structures

29

Summary Analysis Merge Sort

The runtime of Merge Sortis T(n) € O(n - logn).
* grows almost linearly with the input size n...

How good is this?

 Example calculation:
— Again assume that 1 basic operation =1 ns

— We will be a bit more conservative than before and assume that
T(n) =10 -nlogn

m 4 byte numbers | RuntimeT(n) = 10 -nlogn u

03numbers ~ 4KB 10-10-29-.107°s = 0.1 ms
229 ~ 10% numbers ~ 4MB 10-20-2%9-107%s = 0.2 s 16.7 min
239 ~ 10° numbers ~ 4GB 10-30-239-10"°s~ 54 min 31.7 years
240 ~ 1012numbers ~ 4TB 10-40-2%9-10%s=122h > 107 years

Fabian Kuhn Algorithms and Data Structures 30

Quick Sort : Analysis

(—> <)
Divide / X
< S
@ Sort recursively @

(by using quicksort)

* Runtime depends on how we choose the pivots

* Runtime to sort array of size n if pivot partitions array into parts of
sizes An and (1 — A)n:

T(n) = T(An) + T((1 — A)n) + "Find pivoet + Divide*
Cee T o~
* Divide: @((/0
— We iterate over the array from both sides, O(1) cost per step
—> Time to partition array of length n: O(n)

Fabian Kuhn Algorithms and Data Structures 31

Quick Sort : Analysis

If we can also find a pivot in time O(n) such that such that the array
is partitioned into parts of sizes An and (1 — A)n:

e Thereisaconstantb > 0, s. t.
T(n) <T(An) + T((l — A)n) +b-n, T(1)<b

Extreme case) A = 1/2 (best case):

T(n) < 2T (g) +bhn, T@A)<bh

* Asfor Merge Sort: T(n) € O(nlogn) X1 n— |]

Extremecasell) An =1, (1 — A)n = n — 1 (worst case):

T(n)=T(n—1) + bn, T(1)<b
— _

Fabian Kuhn Algorithms and Data Structures

32

Quick Sort : Worst Case Analysis

Extremecasell) An =1, (1 — A)n = n — 1 (worst case):

T(n)=T(n—1) + bn, éT(l)Sbk

In this case, we obtain T(n) € O(n?): : A ()
T =T (=) tbn CJWL%T(MS o 2

=T(u-2) ¥bu-1 tbn Base! T(lkb—"B v/
=T(n =% b (w2 +0n-1tn) | w=1)

%T(\A-‘c\JrHV“&"‘*"‘J““) Sﬁ
CT() +b (L3 T TN+ by

< b2ttt bm?‘_m +bin

— e - B () gl
| Z 0

——

Fabian Kuhn Algorithms and Data Structures 33

Quick Sort With a Random Pivot

Partition For Random Pivot:

* Runtime T(n) = O(nlogn) for all inputs
— but only in Erwartungswert and with very high probability

Intuition:

* With probability 1/2, we get parts of size = n/4, s. t.

@) < T(%)+T(%Tn)+bn

e

\/L/2

Fabian Kuhn Algorithms and Data Structures

34

Quick Sort With a Random Pivot

Partition For Random Pivot:
* Runtime T(n) = O(nlogn) for all inputs
— but only in Erwartungswert and with very high probability

Analysis:

 We will not do this here
— see, e.g., Cormen et al. or the algorithm theory lecture

e Possible approach: write recursion in terms of expected values
E[T(n)] < E[T(N;)) + T(n— N;)] + bn

Fabian Kuhn Algorithms and Data Structures

35

Sorting Lower Bound

Task: Sort sequence a4, a,, ..., a,
e Goal: lower bound (worst-case) runtime

Comparison-based sorting algorithms

 Comparisons are the only allowed way to determine the relative
order between elements

* Hence, the only thing that can influence the sequence of elements
in the final sorted sequence are comparisons of the kind

a; = aj,al- < aj,al- < Clj,(li = Clj,(li > Clj

* If we assume that the elements are pair-wise distinct, we only
need comparisons of the form a; < a;

1 comparison = 1 basic operation

Fabian Kuhn Algorithms and Data Structures

Comparison-Based Sorting Algorithms

Alternative View

Every program (for a deterministic, comp.-based sorting alg.) can

be brought into a form where every if/while/...-condition is of the
following form:

if (al a]) then ...

In each execution of an algorithm, the results of these
comparisons induce a sequence of T/F (true/false) values:

TFFTTTFTFFTTFFFFFTFTTT ...

* This sequence uniquely determines how the values of the array
are rearranged (permuted) by the algorithm.

Different inputs with the same values therefore must lead to
different T/F sequences.

Fabian Kuhn Algorithms and Data Structures

Comparison-Based Sorting Algorithms

Execution tree:

_ s “’
T/C—%ﬂ% Ta,, +
sl
s

Wi%l - Case (W/\Hmﬁ/ /
pth b S
P werst (7@5'&3@(& (mi’c QCDW
Sgw ko oflow

Fabian Kuhn Algorithms and Data Structures

Comp.-Based Sorting: Lower Bound

* |In comparison-based sorting algorithms, the execution dependson
the initial ordering of the values in the inputs, but it does not
depend on the actual values.

— We restrict to cases where the values are all distinct.

* W.l.o.g. we can assume that we have to sort the numbers 1, ..., n.
e Different inputs have to be handled differently.

» Different inputs result in different T/F sequences

* Runtime of an execution = length of the resulting T/F sequence

* Worst-Case runtime = Length of longest T/F sequence:
— We want a lower bound
— Count no. of possible inputs = we need at least as many T/F sequences...

Fabian Kuhn Algorithms and Data Structures

Comp.-Based Sorting: Lower Bound

Number of possible inputs (input orderings):

nl = (m-00(n-2) -

Number of T/F sequences of length < k: La V\Y = & ! Zl(
— —_— Ay ‘L \Lv\ -7 k'(-
ol T e e
|2

_
Theorem: Every comparison-based sorting algorithm requires

Q(n - logn) comparisons in the wors’g/case.
2

Q\/\V\’]:\\V\/Lf éTl (VI/Z) S mg S V\Vl

| +

> N, .

%t >//,€@@2<\/1‘,) “—2‘%@(%) < ﬁ?@(u‘.)s " /f%cm

= 5L (u @5 ") E@am',) = @W\/@@'aﬂ

Fabian Kuhn Algorithms and Data Structures

40

Sorting in Linear Time

* Not possible with comparison-based algorithms

— Lower bound also holds for randomized algorithms...

* Sometimes, we can be faster
— If we can exploit special properties of the input

* Example: Sort n numbers a; € {0,1}:
1. Count number of zeroes and ones in time 0 (n)
2. Write solution to array in time O(n)

Fabian Kuhn Algorithms and Data Structures

Counting Sort

Task:
e Sortinteger array A of lengthn
* We know that forall i € {0, ...,n}, Ali] € {0, ..., k}

Algorithm:

1: counts = new int[k+1] // new int array of length R
2: for 1 = 0 to k do counts[i] = ©

3: for 1 = 0 to n-1 do counts[A[i]]++

4: 1 = 0;

5: for j = @ to k do =«— O(W+lﬁ>

6: for 1 = 1 to counts[j] do

7: Al[i] = j; i++

—_—

Fabian Kuhn Algorithms and Data Structures

