
Algorithms and Data StructuresFabian Kuhn

Lecture 2

Runtime Analysis, Sorting II

Algorithms and Data Structures
Conditional Course

Fabian Kuhn

Algorithms and Complexity

Algorithms and Data StructuresFabian Kuhn

• How can we analyze the runtime of an algorithm?
– runtime is different on different computers…

– depends on compiler, programming language, etc.

• We need an abstract measure to express the runtime

• Idea: Count the number of (basic) operations
– instead of directly measuring the time

– the number of basic operations is independent of computer, compiler

– It is a good measure for the runtime if all basic operations require about the
same time.

2

Runtime Analysis I

Algorithms and Data StructuresFabian Kuhn

What is a basic operation?

• Simple arithmetic operations / comparisons
– +, -, *, /, % (mod), <, >, ==, …

• One memory access
– reading or writing a variable

– not clear if this is really a basic operation?

• One function call
– Of course only jumping to the function code

• Intuitively: one line of program code

• Better: one line of assembly language code

• Even better (?): one processor cycle

• We will see: It is only important that the number of basic opertions
is roughly proportional to the actual running time.

3

Basic Operations

Algorithms and Data StructuresFabian Kuhn

RAM = Random Access Machine

• Standard model to analyze algorithms!

• Basic operations (as “defined”) all require one time unit

• In particular, all memory accesses are equally expensive:

Each memory cell (1 machine word) can be read or written in 1
time unit
– In particular ignores memory hierarchies

– In most cases, it is however a reasonable assumption

• There are alternative abstract models:
– to explicitly capture memory hierarchies

– for huge data volumes (cf. big data)

• e.g.: streaming-models: memory has to be read sequentially

– for distributed / parallel architectures

• memory access can be local or over the network…

4

RAM Model

Algorithms and Data StructuresFabian Kuhn

So far: Number of basic operations is proportional to the runtime

• We can also achieve this without counting the
basic operations exactly!

Simplification 1: We only calculate an upper bound (or a lower
bound) on the number of basic operations

– such that the upper / lower bound is still proportional to the runtime…

• No. of basic op. can depend on several properties of the input
– Size/length of input, but, e.g., for sorting also the ordering in the input

Simplification 2: Most important parameter is input size 𝑛
We always consider the runtime 𝑇(𝑛) as a function of 𝑛.

– And we ignore other properties of the input

5

Runtime analysis II

Algorithms and Data StructuresFabian Kuhn

SelectionSort(A):

1: for i=0 to n-2 do

2: minIdx = i

3: for j=i to n-1 do

4: if A[j] < A[minIdx] then

5: minIdx = j

6: swap(A[i], A[minIdx])

6

Selection Sort: Analysis

#basic op. ≤ 𝑐 ⋅ #inner for loop iterations

𝑥(𝑛)

≤ 𝑐1

≤ 𝑐2

≤ 𝑐3

𝑥 𝑛 = ෍

𝑖=0

𝑛−2

𝑛 − 𝑖 = ෍

ℎ=2

𝑛

ℎ ≤ ෍

ℎ=1

𝑛

ℎ =
𝑛 𝑛 + 1

2
≤ 𝑛2

Algorithms and Data StructuresFabian Kuhn

SelectionSort(A):

1: for i=0 to n-2 do

2: minIdx = i

3: for j=i to n-1 do

4: if A[j] < A[minIdx] then

5: minIdx = j

6: swap(A[i], A[minIdx])

7

Selection Sort: Analysis

≤ 𝑐1

≤ 𝑐2

≤ 𝑐3

Runtime 𝑻 𝒏 ≤ 𝒄 ⋅ 𝒏𝟐 𝑻 𝒏 ≥ 𝒄𝟐
′ ⋅ 𝒏𝟐

𝑇(𝑛)

≥ 𝑐2
′

#basic op. ≤ 𝑐 ⋅ #inner for loop iterations

𝑥 𝑛 ≤ 𝑛2

Algorithms and Data StructuresFabian Kuhn

𝑻(𝒏): Number of basic operations of Selection Sort algorithms for
arrays of length 𝑛

Lemma: There is a constant 𝒄𝑼 > 𝟎, such that 𝑻 𝒏 ≤ 𝒄𝑼 ⋅ 𝒏
𝟐

Lemma: There is a constant 𝒄𝑳 > 𝟎, such that 𝑻 𝒏 ≥ 𝒄𝑳 ⋅ 𝒏
𝟐

8

Selection Sort: Analysis

Algorithms and Data StructuresFabian Kuhn

Summary

• We can only obtain a value that is proportional to the runtime.

• However, we also do not want anything else:
– Analysis should be independent of computer / compiler / etc.

– We want to have statements that are valid in 10 / 100 /… years

• We will always get statements of the following form:

There is a constant 𝐶, such that

𝑇 𝑛 ≤ 𝐶 ⋅ 𝑓 𝑛 or 𝑇 𝑛 ≥ 𝐶 ⋅ 𝑓(𝑛)

• The Big-O notation allows to simplify / generalize this kind of
statements…

9

Runtime analysis

Algorithms and Data StructuresFabian Kuhn

• Formalism to describe the asymptotic growth of functions.
– For formal definitions: see next slide…

• There is a const. 𝐶 > 0, s. t. 𝑇 𝑛 ≤ 𝐶 ⋅ 𝑓(𝑛) becomes:

𝑇 𝑛 ∈ 𝑂(𝑓 𝑛)

• There is a const. 𝐶 > 0, s. t. 𝑇 𝑛 ≥ 𝐶 ⋅ 𝑔(𝑛) becomes:

𝑇 𝑛 ∈ Ω(𝑔 𝑛)

• For Selection Sort:

10

Big-O Notation

𝑻 𝒏 ∈ 𝑶 𝒏𝟐

𝑻 𝒏 ∈ 𝛀 𝒏𝟐
𝑻 𝒏 ∈ 𝚯 𝒏𝟐

Algorithms and Data StructuresFabian Kuhn

𝑶 𝒈 𝒏 ≔ 𝒇 𝒏 | ∃𝒄, 𝒏𝟎 > 𝟎 ∀𝒏 ≥ 𝒏𝟎 ∶ 𝒇 𝒏 ≤ 𝒄 ⋅ 𝒈(𝒏)

• Function 𝑓 𝑛 ∈ 𝑂(𝑔 𝑛), if there are constants 𝑐 and 𝑛0 s. t.
𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛) for all 𝑛 ≥ 𝑛0

𝛀 𝒈 𝒏 ≔ 𝒇 𝒏 | ∃𝒄, 𝒏𝟎 > 𝟎 ∀𝒏 ≥ 𝒏𝟎 ∶ 𝒇 𝒏 ≥ 𝒄 ⋅ 𝒈(𝒏)

• Function 𝑓 𝑛 ∈ Ω(𝑔 𝑛), if there are constants 𝑐 and 𝑛0 s. t.
𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔(𝑛) for all 𝑛 ≥ 𝑛0

𝚯 𝒈 𝒏 ≔ 𝑶 𝒈 𝒏 ∩ 𝛀 𝒈 𝒏

• Function 𝑓 𝑛 ∈ Θ(𝑔 𝑛), if there are constants 𝑐1, 𝑐2 and 𝑛0 s. t.
𝑐1 ⋅ 𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐2 ⋅ 𝑔(𝑛) for all 𝑛 ≥ 𝑛0, resp. if
𝑓 𝑛 ∈ 𝑂(𝑛) and 𝑓 𝑛 ∈ Ω(𝑛)

11

Big-O Notation : Definitions

Algorithms and Data StructuresFabian Kuhn

o 𝒈 𝒏 ≔ 𝒇 𝒏 | ∀𝒄 > 𝟎 ∃𝒏𝟎 > 𝟎 ∀𝒏 ≥ 𝒏𝟎 ∶ 𝒇 𝒏 ≤ 𝒄 ⋅ 𝒈(𝒏)

• Function 𝑓 𝑛 ∈ 𝑜(𝑔 𝑛), if for all constants 𝑐 > 0, we have
𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛) (for sufficiently large 𝑛, indep. of 𝑐)

𝝎 𝒈 𝒏 ≔ 𝒇 𝒏 | ∀𝒄 > 𝟎 ∃𝒏𝟎 > 𝟎 ∀𝒏 ≥ 𝒏𝟎 ∶ 𝒇 𝒏 ≥ 𝒄 ⋅ 𝒈(𝒏)

• Function 𝑓 𝑛 ∈ 𝜔(𝑔 𝑛), if for all constants 𝑐 > 0, we have
𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔(𝑛) (for sufficiently large 𝑛, indep. of 𝑐)

In particular:

𝑓 𝑛 ∈ 𝑜 𝑔 𝑛 ⟹ 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛

𝑓 𝑛 ∈ 𝜔 𝑔 𝑛 ⟹ 𝑓 𝑛 ∈ Ω 𝑔 𝑛

12

Big-O Notation : Definitions

Algorithms and Data StructuresFabian Kuhn

𝒇 𝒏 ∈ 𝑶 𝒈 𝒏 :

• 𝑓 𝑛 " ≤ " 𝑔(𝑛), asymptotically…

• 𝑓(𝑛) asymptotically grows at most as fast as 𝑔(𝑛)

𝒇 𝒏 ∈ 𝛀 𝒈 𝒏 :

• 𝑓 𝑛 " ≥ " 𝑔(𝑛), asymptotically…

• 𝑓(𝑛) asymptotically grows at least as fast as 𝑔(𝑛)

𝒇 𝒏 ∈ 𝚯 𝒈 𝒏 :

• 𝑓 𝑛 " = " 𝑔(𝑛), asymptotically…

• 𝑓(𝑛) asymptotically grows equally fast as 𝑔(𝑛)

13

Big-O Notation : Intuitively

Algorithms and Data StructuresFabian Kuhn

𝒇 𝒏 ∈ 𝒐 𝒈 𝒏 :

• 𝑓 𝑛 " < " 𝑔(𝑛), asymptotically…

• 𝑓(𝑛) asymptotically grows slower than 𝑔(𝑛)

𝒇 𝒏 ∈ 𝝎 𝒈 𝒏 :

• 𝑓 𝑛 " > " 𝑔(𝑛), asymptotically…

• 𝑓(𝑛) asymptotically grows faster than 𝑔(𝑛)

If 𝑓(𝑛) and 𝑔(𝑛) grow monotonically, we have:

𝑓 𝑛 ∈ 𝑜 𝑔 𝑛 ⟺ 𝑓 𝑛 ∉ Ω 𝑔 𝑛

𝑓 𝑛 ∈ 𝜔 𝑔 𝑛 ⟺ 𝑓 𝑛 ∉ 𝑂 𝑔 𝑛

14

Big-O Notation : Intuitively

Algorithms and Data StructuresFabian Kuhn

The following definitions hold for monotonically growing functions

𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 , lim
𝑛→∞

𝑓 𝑛

𝑔 𝑛
< ∞

𝑓 𝑛 ∈ Ω 𝑔 𝑛 , lim
𝑛→∞

𝑓 𝑛

𝑔 𝑛
> 0

𝑓 𝑛 ∈ Θ 𝑔 𝑛 , 0 < lim
𝑛→∞

𝑓 𝑛

𝑔 𝑛
< ∞

𝑓 𝑛 ∈ 𝑜 𝑔 𝑛 , lim
𝑛→∞

𝑓 𝑛

𝑔 𝑛
= 0

𝑓 𝑛 ∈ 𝜔 𝑔 𝑛 , lim
𝑛→∞

𝑓 𝑛

𝑔 𝑛
= ∞

15

Definition by Limits (simplified)

Algorithms and Data StructuresFabian Kuhn

Writing Convention:

• 𝑂 𝑔 𝑛 , Ω 𝑔 𝑛 , … are sets (of functions)

• Correct way of writing (in principle): 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛

• Very common way of writing: 𝑓 𝑛 = 𝑂 𝑔 𝑛

Examples:

• 𝑇 𝑛 = 𝑂(𝑛2) instead 𝑇 𝑛 ∈ 𝑂 𝑛2

• 𝑇 𝑛 = Ω(𝑛2) instead 𝑇 𝑛 ∈ Ω 𝑛2

• 𝑓 𝑛 = 𝑛2 + 𝑂(𝑛) :

𝑓 𝑛 ∈ 𝑔 𝑛 ∶ ∃ℎ 𝑛 ∈ 𝑂 𝑛 s. t. 𝑔 𝑛 = 𝑛2 + ℎ 𝑛

• 𝑎 𝑛 = 1 + 𝑜 1 ⋅ 𝑏 𝑛

16

Big-O Notation : Remarks

Algorithms and Data StructuresFabian Kuhn

Writing Convention:

• 𝑂 𝑔 𝑛 , Ω 𝑔 𝑛 , … are sets (of functions)

• Correct way of writing (in principle): 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛

• Very common way of writing: 𝑓 𝑛 = 𝑂 𝑔 𝑛

Asymptotic Behavior of General Limits:

• Same notation is used more generally, e.g., 𝑓(𝑥) for 𝑥 → 0

• E.g., Taylor approx.: 𝑒𝑥 = 1 + 𝑥 + 𝑂(𝑥2), or 𝑒𝑥 = 1 + 𝑥 + 𝑜 𝑥

Alternative Definition for 𝛀 𝒈 𝒏 :

𝛀 𝒈 𝒏 ≔ 𝒇 𝒏 | ∃𝒄, 𝒏𝟎 > 𝟎 ∀𝒏 ≥ 𝒏𝟎 ∶ 𝒇 𝒏 ≥ 𝒄 ⋅ 𝒈(𝒏)

𝛀 𝒈 𝒏 ≔ 𝒇 𝒏 | ∃𝒄 > 𝟎 ∀𝒏𝟎 > 𝟎 ∃𝒏 ≥ 𝒏𝟎 ∶ 𝒇 𝒏 ≥ 𝒄 ⋅ 𝒈(𝒏)

– We will use the 1st definition

– The two definitions are only different for non-monotonic functions

17

Big-O Notation : Remarks

Algorithms and Data StructuresFabian Kuhn

Selection Sort:

• Runtime 𝑇 𝑛 , there are constants 𝑐1, 𝑐2 : 𝑐1𝑛
2 ≤ 𝑇 𝑛 ≤ 𝑐2𝑛

2

𝑇 𝑛 ∈ 𝑂 𝑛2 , 𝑇 𝑛 ∈ Ω 𝑛2 , 𝑇 𝑛 ∈ Θ 𝑛2

• 𝑇(𝑛) grows more than linear in 𝑛: 𝑇 𝑛 ∈ 𝜔(𝑛)

Further examples:

• 𝑓 𝑛 = 10𝑛3, 𝑔 𝑛 = Τ𝑛3 1000 :

• 𝑓 𝑛 = 𝑒𝑛, 𝑔 𝑛 = 𝑛100 :

• 𝑓 𝑛 = Τ𝑛 log2 𝑛 , 𝑔 𝑛 = 𝑛 :

• 𝑓 𝑛 = 𝑛 Τ1 256, 𝑔 𝑛 = 10 ln 𝑛 :

• 𝑓 𝑛 = log10 𝑛 , 𝑔 𝑛 = log2 𝑛 :

• 𝑓 𝑛 = 𝑛 𝑛, 𝑔 𝑛 = 2𝑛 :

18

Big-O Notation : Examples

lim
𝑛→∞

𝑒𝑛

𝑛100
→ ∞

𝑓 𝑛

𝑔 𝑛
=

𝑛

log2 𝑛

=
2 Τ𝑡 2

𝑡

𝑓 𝑛 ∈ Θ 𝑔 𝑛

𝑓 𝑛 ∈ 𝜔 𝑔 𝑛

𝑓 𝑛 ∈ 𝜔 𝑔 𝑛

𝑓 𝑛 ∈ 𝜔 𝑔 𝑛

𝑓 𝑛 ∈ Θ 𝑔 𝑛

𝑓 𝑛 ∈ o 𝑔 𝑛

log 𝑛 𝑛 = 𝑛 ⋅ log 𝑛 , log 2𝑛 = 𝑛

log10 𝑛 =
log2 𝑛

log2 10

Algorithms and Data StructuresFabian Kuhn

InsertionSort(A):

1: for i = 1 to n-1 do

2: // prefix A[1..i] is already sorted

3: pos = i

4: while (pos > 0) and (A[pos] < A[pos-1]) do

5: swap(A[pos], A[pos–1])

6: pos = pos - 1

19

Analysis Insertion Sort

Algorithms and Data StructuresFabian Kuhn

Worst Case Analysis

• Analyze runtime 𝑇(𝑛) for a worst possible input of size 𝑛

• Important / standard way of analyzing algorithms

Best Case Analyse

• Analyze runtime 𝑇(𝑛) for a best possible input of size 𝑛

• Usually not very interesting…

Average Case Analyse

• Analyze runtime 𝑇(𝑛) for a typical input of size 𝑛

• Problem: what is a typical input?
– Standard approach: use a random input

– Not clear, how close real inputs and random inputs are…

– Possible alternative: smoothed analysis (we will not look at this)

20

Worst case, best case, average case

Algorithms and Data StructuresFabian Kuhn

Quadratic = 2x as large input  4x as long runtime
– For large 𝑛, this already seems to grow quite fast…

Example calculation:

• Assume that the number of basic operations 𝑇 𝑛 = 𝑛2

• Additionally, assume there is 1 basic operation per processor cycle

• For a 1Ghz processor, we get 1 ns per basic operation

21

How good is quadratic runtime?

Input size 𝒏 4 bytes per number Runtime 𝑻(𝒏)

103 numbers ≈ 4KB 103⋅2 ⋅ 10−9 s = 1 ms

106 numbers ≈ 4MB 106⋅2 ⋅ 10−9 s = 16.7 min

109 numbers ≈ 4GB 109⋅2 ⋅ 10−9 s = 31.7 years

too slow for large problems!

Algorithms and Data StructuresFabian Kuhn

• Divide is trivial  cost 𝑂(1)

• Recursive sorting: We will look at this...

• Merge: We will look at this first...

22

Analysis Merge Sort

Divide

Sort recursively
(by using mergesort)

Merge

Algorithms and Data StructuresFabian Kuhn

MergeSortRecursive(A, start, end, tmp) // sort A[start..end-1]
⋮

5: pos = start; i = start; j = middle

6: while (pos < end) do

7: if (i < middle) and (A[i] < A[j]) then

8: tmp[pos] = A[i]; pos++; i++

9: else

10: tmp[pos] = A[j]; pos++; j++

11: for i = start to end-1 do A[i] = tmp[i]

23

Analysis Merge Step

Algorithms and Data StructuresFabian Kuhn

Runtime 𝑇(𝑛) consists of:

• Divide and Merge: 𝑂 𝑛

• 2 recursive calls to sort ⌈ Τ𝑛 2⌉ and Τ𝑛 2 elements

Recursive formulation of 𝑻(𝒏):

• There is a constant 𝑏 > 0, s. t.

𝑇 𝑛 ≤ 𝑇
𝑛

2
+ 𝑇

𝑛

2
+ 𝑏 ⋅ 𝑛, T 1 ≤ 𝑏

• We simplify a bit and ignore all the rounding:

𝑻 𝒏 ≤ 𝟐 ⋅ 𝑻
𝒏

𝟐
+ 𝒃 ⋅ 𝒏, 𝑻 𝟏 ≤ 𝒃

24

Analysis Merge Sort

Algorithms and Data StructuresFabian Kuhn

𝑻 𝒏 ≤ 𝟐 ⋅ 𝑻
𝒏

𝟐
+ 𝒃 ⋅ 𝒏, 𝑻 𝟏 ≤ 𝒃

Let’s just try and see what we get…

25

Analysis Merge Sort

Algorithms and Data StructuresFabian Kuhn

Recursive equation: 𝑇 𝑛 ≤ 2 ⋅ 𝑇
𝑛

2
+ 𝑏 ⋅ 𝑛, 𝑇 1 ≤ 𝑏

Guess: 𝑇 𝑛 ≤ 𝑏 ⋅ 𝑛 ⋅ 1 + log2 𝑛

Proof by induction:

26

Analysis Merge Sort

Algorithms and Data StructuresFabian Kuhn

Recursive equation: 𝑇 𝑛 ≤ 2 ⋅ 𝑇
𝑛

2
+ 𝑏 ⋅ 𝑛, 𝑇 1 ≤ 𝑏

Consider the recursion tree:

27

Alternative Analysis of Merge Sort

Algorithms and Data StructuresFabian Kuhn 28

Merge Sort Measurements

Algorithms and Data StructuresFabian Kuhn 29

Merge Sort Measurements

Algorithms and Data StructuresFabian Kuhn

The runtime of Merge Sort is 𝑻 𝒏 ∈ 𝑶(𝒏 ⋅ 𝐥𝐨𝐠𝒏).

• grows almost linearly with the input size 𝑛…

How good is this?

• Example calculation:
– Again assume that 1 basic operation = 1 ns

– We will be a bit more conservative than before and assume that
𝑇 𝑛 = 10 ⋅ 𝑛 log 𝑛

30

Summary Analysis Merge Sort

Input size 𝒏 4 byte numbers Runtime 𝑻 𝒏 = 𝟏𝟎 ⋅ 𝒏 𝐥𝐨𝐠 𝒏 𝒏𝟐

210 ≈ 103numbers ≈ 4KB 10 ⋅ 10 ⋅ 210 ⋅ 10−9 s ≈ 0.1 ms 1 ms

220 ≈ 106 numbers ≈ 4MB 10 ⋅ 20 ⋅ 220 ⋅ 10−9 s ≈ 0.2 s 16.7 min

230 ≈ 109 numbers ≈ 4GB 10 ⋅ 30 ⋅ 230 ⋅ 10−9 s ≈ 5.4 min 31.7 years

240 ≈ 1012numbers ≈ 4TB 10 ⋅ 40 ⋅ 240 ⋅ 10−9 s ≈ 122 h > 107 years

Algorithms and Data StructuresFabian Kuhn

• Runtime depends on how we choose the pivots

• Runtime to sort array of size 𝑛 if pivot partitions array into parts of
sizes 𝜆𝑛 and 1 − 𝜆 𝑛:

𝑻 𝒏 = 𝑻 𝝀𝒏 + 𝑻 𝟏 − 𝝀 𝒏 + "𝐅𝐢𝐧𝐝 𝐩𝐢𝐯𝐨𝐭 + 𝐃𝐢𝐯𝐢𝐝𝐞“

• Divide:
– We iterate over the array from both sides, 𝑂 1 cost per step
 Time to partition array of length 𝑛: 𝑂(𝑛)

31

Quick Sort : Analysis

𝑥

Divide

Sort recursively
(by using quicksort)

Algorithms and Data StructuresFabian Kuhn

If we can also find a pivot in time 𝑂(𝑛) such that such that the array
is partitioned into parts of sizes 𝜆𝑛 and 1 − 𝜆 𝑛:

• There is a constant 𝑏 > 0, s. t.

𝑇 𝑛 ≤ 𝑇 𝜆𝑛 + 𝑇 1 − 𝜆 𝑛 + 𝑏 ⋅ 𝑛, 𝑇 1 ≤ 𝑏

Extreme case I) 𝜆 = Τ1 2 (best case):

𝑇 𝑛 ≤ 2𝑇
𝑛

2
+ 𝑏𝑛, 𝑇 1 ≤ 𝑏

• As for Merge Sort: 𝑇 𝑛 ∈ 𝑂 𝑛 log 𝑛

Extreme case II) 𝜆𝑛 = 1, 1 − 𝜆 𝑛 = 𝑛 − 1 (worst case):

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑏𝑛, 𝑇 1 ≤ 𝑏

32

Quick Sort : Analysis

Algorithms and Data StructuresFabian Kuhn

Extreme case II) 𝜆𝑛 = 1, 1 − 𝜆 𝑛 = 𝑛 − 1 (worst case):

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑏𝑛, 𝑇 1 ≤ 𝑏

In this case, we obtain 𝑇 𝑛 ∈ Θ 𝑛2 :

33

Quick Sort : Worst Case Analysis

Algorithms and Data StructuresFabian Kuhn

Partition For Random Pivot:

• Runtime 𝑻 𝒏 = 𝑶(𝒏 𝐥𝐨𝐠𝒏) for all inputs
– but only in Erwartungswert and with very high probability

Intuition:

• With probability Τ1 2, we get parts of size ≥ Τ𝑛 4, s. t.

𝑇 𝑛 ≤ 𝑇
𝑛

4
+ 𝑇

3𝑛

4
+ 𝑏𝑛

34

Quick Sort With a Random Pivot

Algorithms and Data StructuresFabian Kuhn

Partition For Random Pivot:

• Runtime 𝑻 𝒏 = 𝑶(𝒏 𝐥𝐨𝐠𝒏) for all inputs
– but only in Erwartungswert and with very high probability

Analysis:

• We will not do this here
– see, e.g., Cormen et al. or the algorithm theory lecture

• Possible approach: write recursion in terms of expected values

𝔼 𝑇 𝑛 ≤ 𝔼 𝑇 𝑁𝐿 + 𝑇 𝑛 − 𝑁𝐿 + 𝑏𝑛

35

Quick Sort With a Random Pivot

Algorithms and Data StructuresFabian Kuhn

Task: Sort sequence 𝑎1, 𝑎2, … , 𝑎𝑛
• Goal: lower bound (worst-case) runtime

Comparison-based sorting algorithms

• Comparisons are the only allowed way to determine the relative
order between elements

• Hence, the only thing that can influence the sequence of elements
in the final sorted sequence are comparisons of the kind

𝑎𝑖 = 𝑎𝑗 , 𝑎𝑖 ≤ 𝑎𝑗 , 𝑎𝑖 < 𝑎𝑗 , 𝑎𝑖 ≥ 𝑎𝑗 , 𝑎𝑖 > 𝑎𝑗

• If we assume that the elements are pair-wise distinct, we only
need comparisons of the form 𝑎𝑖 ≤ 𝑎𝑗

• 1 comparison = 1 basic operation

36

Sorting Lower Bound

Algorithms and Data StructuresFabian Kuhn

Alternative View

• Every program (for a deterministic, comp.-based sorting alg.) can
be brought into a form where every if/while/…-condition is of the
following form:

𝐢𝐟 𝑎𝑖 ≤ 𝑎𝑗 𝐭𝐡𝐞𝐧 …

• In each execution of an algorithm, the results of these
comparisons induce a sequence of T/F (true/false) values:

𝐓𝐅𝐅𝐓𝐓𝐓𝐅𝐓𝐅𝐅𝐓𝐓𝐅𝐅𝐅𝐅𝐅𝐓𝐅𝐓𝐓𝐓…

• This sequence uniquely determines how the values of the array
are rearranged (permuted) by the algorithm.

• Different inputs with the same values therefore must lead to
different T/F sequences.

37

Comparison-Based Sorting Algorithms

Algorithms and Data StructuresFabian Kuhn

Execution tree:

38

Comparison-Based Sorting Algorithms

Algorithms and Data StructuresFabian Kuhn

• In comparison-based sorting algorithms, the execution depends on
the initial ordering of the values in the inputs, but it does not
depend on the actual values.
– We restrict to cases where the values are all distinct.

• W.l.o.g. we can assume that we have to sort the numbers 1,… , 𝑛.

• Different inputs have to be handled differently.

• Different inputs result in different T/F sequences

• Runtime of an execution ≥ length of the resulting T/F sequence

• Worst-Case runtime ≥ Length of longest T/F sequence:
– We want a lower bound

– Count no. of possible inputs we need at least as many T/F sequences...

39

Comp.-Based Sorting: Lower Bound

Algorithms and Data StructuresFabian Kuhn

Number of possible inputs (input orderings):

Number of T/F sequences of length ≤ 𝑘:

Theorem: Every comparison-based sorting algorithm requires
Ω 𝑛 ⋅ log 𝑛 comparisons in the worst case.

40

Comp.-Based Sorting: Lower Bound

Algorithms and Data StructuresFabian Kuhn

• Not possible with comparison-based algorithms
– Lower bound also holds for randomized algorithms...

• Sometimes, we can be faster
– If we can exploit special properties of the input

• Example: Sort 𝑛 numbers 𝑎𝑖 ∈ 0,1 :

1. Count number of zeroes and ones in time 𝑂(𝑛)

2. Write solution to array in time 𝑂 𝑛

41

Sorting in Linear Time

Algorithms and Data StructuresFabian Kuhn

Task:

• Sort integer array 𝐴 of length 𝑛

• We know that for all 𝑖 ∈ {0,… , 𝑛}, 𝐴 𝑖 ∈ {0,… , 𝑘}

Algorithm:

1: counts = new int[k+1] // new int array of length k

2: for i = 0 to k do counts[i] = 0

3: for i = 0 to n-1 do counts[A[i]]++

4: i = 0;

5: for j = 0 to k do

6: for l = 1 to counts[j] do

7: A[i] = j; i++

42

Counting Sort

