University of Freiburg Dept. of Computer Science Prof. Dr. F. Kuhn M. Fuchs, G. Schmid

Algorithms and Datastructures Winter Term 2022 Grading Guidelines Exercise Sheet 4

Due: Wednesday, November 16th, 2pm

Exercise 1: Hashing with Open Addressing

(10 Points)

We consider hash tables with open addressing and two different methods for collision resolution: linear probing and double hashing. Let m be the size of the hash table where m is prime. Let $h_1(x) := 53 \cdot x$ and $h_2(x) := 1 + (x \mod (m-1))$. We define the following hash functions for collision resolution according to the lecture:

- linear probing: $h_{\ell}(x,i) := (h_1(x) + i) \mod m$.
- double hashing: $h_d(x,i) := (h_1(x) + i \cdot h_2(x)) \mod m$.
- (a) Implement a hash table with operations insert and find using the mentioned strategies for collision resolution¹. You may use the template HashTable.py. (5 Points)
- (b) Create a hash table of size m > 1000 (m prime) and measure the average time for inserting k keys for $k \in \{\lfloor \frac{m \cdot i}{50} \rfloor \mid i = 1, \dots, 49\}$ in four variations: Using linear probing / double hashing; inserting k random keys² / the set of keys $\{m \cdot i \mid i = 1, \dots, k\}$. Create a plot showing the four different average runtimes. Discuss your results. (5 Points)

Exercise 2: Application of Hashtables

(10 Points)

Consider the following algorithm:

Algorithm 1 algorithm

 \triangleright Input: Array A of length n with integer entries

```
1: for i = 1 to n - 1 do
2: for j = 0 to i - 1 do
3: for k = 0 to n - 1 do
4: if |A[i] - A[j]| = A[k] then
5: return true
6: return false
```

(a) Describe what algorithm computes and analyse its asymptotical runtime. (3 Points) Hint: The difference |A[i] - A[j]| may become arbitrarily large.

- (b) Describe a different algorithm \mathcal{B} for this problem (i.e., $\mathcal{B}(A) = \mathtt{algorithm}(A)$ for each input A) which uses hashing and takes time $\mathcal{O}(n^2)$ (with proof). (3 Points) Hint: You may assume that inserting and finding keys in a hash table needs $\mathcal{O}(1)$ if $\alpha = \mathcal{O}(1)$ (α is the load of the table).
- (c) Describe another algorithm for this problem without using hashing which takes time $\mathcal{O}(n^2 \log n)$ (with proof). (4 Points)

 $^{^{1}}$ You can assume that no more than m elements will be inserted to the hash table.

²Unique random values from $\{0,\ldots,z\}$ with $z\gg m$, e.g., with random.sample(range(z+1), k).