# Theory of Distributed Systems <br> Exercise Sheet 1 

Due: Wednesday, 26th of April 2023, 12:00 noon

## Exercise 1: Schedules

Consider three nodes, $v_{1}, v_{2}$, and $v_{3}$, which are connected via FIFO channels, that is, messages between any two nodes are received in the same order they are sent. For example, if node $v_{1}$ sends first message $m_{1}$ then $m_{2}$ to node $v_{2}$, then $v_{2}$ will first receive $m_{1}$ and then $m_{2}$.
Devise one possible schedule $S$ which is consistent with the following local restrictions to the three nodes.

- $S \mid 1=s_{1,3} s_{1,3} r_{1,2} r_{1,3} s_{1,2} r_{1,2} s_{1,3}$,
- $S \mid 2=s_{2,3} s_{2,1} r_{2,1} s_{2,1}$,
- $S \mid 3=r_{3,2} r_{3,1} s_{3,1} r_{3,1} r_{3,1}$.
$s_{i, j}$ denotes the send event from node $i$ to node $j$ and $r_{j, i}$ denotes the event that node $j$ receives a message from node $i$.


## Exercise 2: The Level Algorithm

Consider the following algorithm between two connected nodes $u$ and $v$ :
The two nodes maintain levels $\ell_{u}$ and $\ell_{v}$, which are both initialized to 0 . One round of the algorithm works as follows:

1. Both nodes send their current level to each other
2. If $u$ receives level $\ell_{v}$ from $v, u$ updates its level to $\ell_{u}:=\max \left\{\ell_{u}, \ell_{v}+1\right\}$. If the message to node $u$ is lost, node $u$ does not change its level $\ell_{u}$. Node $v$ updates its level $\ell_{v}$ in the same (symmetric) way.

Argue that if the level algorithm runs for $r$ rounds, the following properties hold:
(a) At the end, the two levels differ by at most one.
(b) If all messages succeed, both levels are equal to $r$.
(c) The level of a node is at least 1 if and only if the node received at least one message.

## Exercise 3: (Variations) of Two Generals

In the lecture we considered the (deterministically unsolvable) Two Generals consensus problem:

- two deterministic nodes, synchronuous communication, unreliable messages,
- input: 0 or 1 for each node,
- output: each node needs to decide either 0 or 1 ,
- agreement: both nodes must output the same decision (0 or 1 ),
- validity: if both nodes have the same input $x \in\{0,1\}$ and no messages are lost, both nodes output $x$,
- termination: both nodes terminate in a bounded number of rounds.

In this exercise we consider three modifications of the model. For each of them, either give a (deterministic) algorithm or state a proof which shows that the variation cannot be solved deterministically.
(a) There is the guarantee that within the first 10 rounds at least one message in each direction succeeds.
(b) There is the guarantee that within the first 10 rounds at least one message succeeds. Remark: nodes are not allowed to stay silent.
(c) Let $k \in \mathbb{N}$ be a natural number. The input for each node is a number $x \in\{0, \ldots, k\}$.

Goal: If no message gets lost and both have the same input $x \in\{0, \ldots, k\}$, both have to output $x$. In all other cases the nodes should output numbers which do not differ by more than one. The algorithm still has to terminate in a finite number of rounds.

