
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
S. Faour, M. Fuchs,
Z. Parsaeian, G. Schmid

Theory of Distributed Systems

Exercise Sheet 12
Due: Wednesday, 26th of July 2023, 12:00 noon

Exercise 1: Aggregation in the MPC Model (10 Points)

Assume you are given a number of M ∈ O
(
N
S logS N

)
machines, where N is the number of aggregation

messages that are collectively stored by the machines Mi, i ∈ {1, . . . ,M}. Each machine Mi has a
memory large enough to store S such messages. By definition of the MPC model every machine can
send and receive at most S aggregation messages per round.

Each aggregation message m is a triple consisting of the aggregation value vm, the target machine tm
and an aggregation group gm. All messages in the same group go to the same target and each machine
is the target of not more than S/2 aggregation groups. The aggregation problem is solved when every
target machine tm learns an aggregation message m that has minimal value among all aggregation
messages of its aggregation group gm.

In the following we give an algorithm that solves the aggregation problem under the assumptions that
the intial aggregation messages are stored on 2dNS e machines and none of those machines is a target of
an aggregation message. We also assume that there are no more than 2dNS e target machines. Further,
assume that we have sufficient long string of “public random bits”, which can be used to make random
decisions that are the same for all machines, (since all machines utilize the same random bit string).
Your task is to show that in the given algorithm no machine sends or receives more than S/2 messages
per round in expectation. After how many rounds will the algorithm terminate? Explain!

Algorithm: We arrange the O
(
N
S logS N

)
machines into ` := 1 + dlogS/2Ne ∈ O(logS N) levels

L1, . . . , L` of 2dNS e machines each, which is abstractly shown in Figure 1. We will explain the exact
value of ` later in the analysis. Furthermore, we arrange the levels such that initially all messages are
held only by machines in L1 (“message sources”), and the targets of the aggregation messages are in
level L`.

L2

2dN/Se machines

Li−1

Li

L`

L1

2dN/Se machines

2dN/Se machines

2dN/Se machines

2dN/Se machines

Message “Sources”

Message Targets

Figure 1: Arrangement of machines into levels.

Outline: The idea of solving the above aggregation problem is to establish aggregation trees between
machines of successive levels. There will be one aggregation tree for each aggregation group with
leaves in L1 and roots in L`. The messages are then sent up the trees like in a convergecast. Machines
will choose their according tree parents in the next level randomly, which ensures that no machine
obtains too many messages in expectation.

Aggregation trees on first level: For level 1, we say that a machine in L1 that has a message m
with the aggregation group gm, participates in the aggregation tree of that group gm (a given machine
can participate in multiple aggregation groups, as it holds multiple messages).

For each aggregation group g the machines in L1 choose a random subset L2
g from the next level L2

of size |L2
g| = N · (2

S)2. Note that all machines participating in the aggregation tree of group g can all
agree on the same random set L2

g using the public randomness.

Then each machine that takes part in group g picks a random parent node from L2
g. Note that this

random decision is now independent from the parent choice of other machines! By doing this for all
machines in L1 and for aggregation groups, each machine in L1 will now have a parent node for each
aggregation group it participates in, see Figure 2.

L2

Li−1

Li

L`

L1

L2
redL2

blueL2
orange

Figure 2: Three example machines in L1 that have messages (little colored boxes) from three aggre-
gation groups (orange, blue, red). We determine random sets of machines from L2

orange, L
2
blue, L

2
red.

Each machine picks a random parent from the according random set for each group it participates in.

Aggregation trees for subsequent levels: The description above forms the base case above and
now we describe how to connect Li−1 to level Li for 2 < i ≤ ` − 1. We say that a machine µ ∈ Li−1

participates in aggregation group g if it is in the according set µ ∈ Li−1
g .

L2

Li−1

Li

L`

L1

Li−1
redLi−1

blueLi−1
orange

Li
redLi

blue
Li
orange

Figure 3: Nodes in Li−1
g choose a parent uniformly at random from Lig (g = orange, blue, red).

Similar as before, for each aggregation group g the machines in Li−1 choose a random subset Lig from

the next level Li of size |Lig| = N · (2
S)i. Again, all machines agree on the same random sets Lig using

public randomness. Let µ be a machine that participates in aggregation group g. As before, it chooses
a parent in Lig uniformly at random (and also independent from other machines), c.f. Figure 3.

We have to make a distinction for the last level `. There we simply connect all nodes in aggregation
group L`−1

g to the respective target t ∈ L` (c.f., Figure 4).

L2

L`

L1

Li

L`−1

L`−1
red

L`−1
blueL`−1

orange

Figure 4: Nodes in L`−1
g create an edge to the target machine of group g (g = orange, blue, red).

Aggregation Algorithm: In round i, every machine in level i sends for every aggregation group gm
one message m with smallest value vm among all messages that this machine has from that group gm
to its parent in Li+1

gm .

Exercise 2: Implement a Phase of Bor̊uvka’s Algorithm (10 Points)

In class, we sketched how to implement one phase of Bor̊uvka’s MST algorithm in the strongly sublinear
regime S = nα for some constant 0 < α < 1. Argue in more detail how this can be done in O(1)
rounds, given that we can solve the above aggregation problem.

