

Theoretical Computer Science - Bridging Course Sample Solution Exercise Sheet 1

Due: Tuesday, 23rd of April 2024, 12:00 pm

Exercise 1: Validness of Mathematical Induction

(Bonus Points)

To prove that a statement $P(n)$ is true for all $n \in \mathbb{N}$, mathematical induction can be stated as

$$
(P(1) \wedge \forall k(P(k) \Rightarrow P(k+1))) \Rightarrow \forall n P(n)
$$

$P(1)$ stands for the Base Case, and $P(k) \Rightarrow P(k+1)$ for Induction Hypothesis. The statement above is valid. i.e) if Antecedent is true, then the Consequent can't be false. , which justifies the use of Mathematical Induction in this case. Using Contradiction, prove the validity of mathematical induction. In other words, Using contradiction, prove that if $P(1) \wedge \forall k(P(k) \Rightarrow P(k+1))$ is true, then $\forall n P(n)$ necessarily follows.
Use the Well-Ordering Property of natural numbers to help finding a contradiction.
(Hint : Well-Ordering Property of natural numbers states that every nonempty subset of natural numbers has a least element.)

Sample Solution

By negating the consequent $\forall n P(n)$, assume there exists $n \in \mathbb{N}$ such that $P(n)$ is false.
Let S be the set of natural numbers that make $P(n)$ false.
S has a least element according to the well-ordering property of natural numbers. Let's call this least element m.
As $m \neq 1$, so $m>1$, which makes $m-1 \in \mathbb{N} . m-1 \notin S$, as m is the least element of S. According to the $\forall k(P(k) \Rightarrow P(k+1)), P(m)$ has to be true, and this contradicts the assumption we've made earlier.

Exercise 2: Miscellaneous Mathematical Proofs (2+3+3+1 Points)

1. Let $S(n)=\sum_{i=1}^{n} i$ be the sum of the first n natural numbers and $C(n)=\sum_{i=1}^{n} i^{3}$ be the sum of the first n cubes. Use mathematical induction to prove the following interesting conclusion: $C(n)=S^{2}(n)$ for every n.
2. Let A, B, and C be subsets of U. Which of the following statements is true? Justify.

- If $A \cap B=A \cap C$, then $B=C$.
- If $A \cup B=A \cup C$, then $B=C$.
- $\overline{A \cup B}=\bar{A} \cap \bar{B}$, where \bar{A} is the complement of A.

3. Let $A_{1}, A_{2}, \ldots, A_{n}$ be nonempty subsets of a Universal Set U, where n is any positive integer, and $n \geq 2$. Using the result of above exercise, i.e. $\overline{A_{1} \cup A_{2}}=\overline{A_{1}} \cap \overline{A_{2}}$. Prove a generalized result

$$
\overline{\bigcup_{i=1}^{n} A_{i}}=\bigcap_{i=1}^{n} \overline{A_{i}}
$$

using induction.
4. Let $A_{1}, A_{2}, \ldots, A_{k}$ be nonempty subsets of U, where k is any positive integer. Construct a nonempty subset $A \subseteq U$ such that $A \cap A_{i} \neq \phi$, for all $i \in\{1,2, \ldots, k\}$.

Sample Solution

1. Base case: for $n=1,1^{3}=(1)^{2}$ is true.

Induction step: for each $k \geq 1$, we assume that the statement holds true for k i.e. $C(k)=S^{2}(k)$ (induction hypothesis IH). Now, we need to prove that the statement holds true for $k+1$ i.e. we want to show that $C(k+1)=S^{2}(k+1)$.
Indeed first, we recall that $S(n)=\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$, hence $S^{2}(k+1)=\left(\frac{(k+1)(k+2)}{2}\right)^{2}=$ $\frac{(k+1)^{2}(k+2)^{2}}{4}$.
Next, we have that $C(k+1)=\sum_{i=1}^{k} i^{3}+(k+1)^{3}=C(k)+(k+1)^{3} \stackrel{\text { IH }}{=} S^{2}(k)+(k+1)^{3}=$ $\left(\frac{k(k+1)}{2}\right)^{2}+(k+1)^{3}=\left(\frac{k^{2}(k+1)^{2}}{4}\right)+(k+1)^{3}=\frac{(k+1)^{2}}{4}\left(k^{2}+4 k+4\right)=\frac{(k+1)^{2}}{4}(k+2)^{2}=S^{2}(k+1)$. Hence, the statement holds true for $k+1$, which ends our induction proof.
2. - False. We give a counterexample: take $A=\{1,2,3\}, B=\{1,4\}$ and $C=\{1,5\}$, hence $A \cap B=A \cap C$ and $B \neq C$.

- False. We give a counterexample: take $A=\{1,2\}, B=\{1,3\}$ and $C=\{2,3\}$, hence $A \cup B=A \cup C$ and $B \neq C$.
- (De Morgan's law). Indeed,

$$
\begin{gathered}
x \in \overline{A \cup B} \Longleftrightarrow x \notin A \cup B \Longleftrightarrow x \notin A \text { and } x \notin B \Longleftrightarrow x \in \bar{A} \text { and } \\
x \in \bar{B} \Longleftrightarrow x \in \bar{A} \cap \bar{B}
\end{gathered}
$$

hence, $\overline{A \cup B}=\bar{A} \cap \bar{B}$.
3. Base case: for $\mathrm{n}=2, \overline{A_{1} \cup A_{2}}=\overline{A_{1}} \cap \overline{A_{2}}$.

Induction Hypothesis : for arbitrary $k \geq 2, \overline{\bigcup_{i=1}^{k} A_{i}}=\bigcap_{i=1}^{k} \overline{A_{i}}$, where $A_{1}, A_{2} \ldots A_{k}$ are subsets of U. We assume this to be true for every possible collection of these k subsets of U . Using this, we want this to be true, also for every possible collection of $k+1$ subsets of U.
Induction Step(one version) : Starting from induction hypothesis, pick arbitrary A_{k+1} and add $\overline{A_{k+1}}$ for both sides.

$$
\overline{\bigcup_{i=1}^{k} A_{i}} \cap \overline{A_{k+1}}=\bigcap_{i=1}^{k} \overline{A_{i}} \cap \overline{A_{k+1}}
$$

In order to show $\overline{\bigcup_{i=1}^{k} A_{i}} \cap \overline{A_{k+1}}=\bigcap_{i=1}^{k+1} \overline{A_{i}}$,

$$
\overline{\bigcup_{i=1}^{k} A_{i}} \cap \overline{A_{k+1}} \stackrel{\mathrm{IH}}{=} \bigcap_{i=1}^{k} \overline{A_{i}} \cap \overline{A_{k+1}}=\bigcap_{i=1}^{k+1} \overline{A_{i}}
$$

Note that for this problem, we have to show for all the possible statements $P(n)$. If you take a look at above way of proving it, it starts from induction hypothesis to build up $(k+1)$ th object. If you do it this way, you need to make sure that you build all the possible objects to prove the statement. This problem was easy because the cardinality of $(k+1)$ th object is just +1 from (k)th object. So we only need to pick one arbitrary subset to go to $(k+1)$ th object.

But often, this method of building up from the induction hypothesis not always works well, simply because there could be many ways to build up $(k+1)$ th objects, and you need to prove for all of them. This is cumbersome and this often leads you to an incorrect proof. So another version, which is stated below, would be a better and natural way to prove, as it starts from an arbitrary object A_{k+1} (So already covering all the $(k+1)$ th objects) and try to decompose it so that we could utilize the induction hypothesis.
Induction Step(recommended version) : for some list of subsets $A_{1}, \ldots A_{k+1}$,
WTS: $\overline{\bigcup_{i=1}^{k+1} A_{i}}=\bigcap_{i=1}^{k+1} \overline{A_{i}}$

$$
\bigcup_{i=1}^{\overline{k+1} A_{i}}=\overline{\bigcup_{i=1}^{k} A_{i} \cup A_{k+1}}=\overline{\bigcup_{i=1}^{k} A_{i} \cap \overline{A_{k+1}}} \overline{\mathrm{IH}}=\bigcap_{i=1}^{k} \overline{A_{i}} \cap \overline{A_{k+1}}=\bigcap_{i=1}^{k+1} \overline{A_{i}}
$$

4. We construct A by choosing one element from each A_{i}, for all $i \in\{1,2, \ldots, k\}$.

Exercise 3: Graphs (Part 1)

(3+2 Points)
A simple graph is a graph without self loops, i.e., every edge of the graph is an edge between two distinct nodes. The degree $d(v)$ of a node $v \in V$ in an undirected graph $G=(V, E)$ is the number of its neighbors, i.e, $d(v)=|\{u \in V \mid\{v, u\} \in E\}|$. Let $m \geq 0$ denote the number of edges in graph G.

1. Prove the handshaking lemma i.e. $\sum_{v \in V} d(v)=2 m$ via mathematical induction on m for any simple graph $G=(V, E)$.
2. Show that every simple graph with an odd number of nodes contains a node with even degree.

Sample Solution

1. We prove the handshaking lemma by mathematical induction on m.

Base step: let $G=(V, E)$ be a graph where $|V|=n$ and $|E|=m=0$. Notice that G is the empty graph on n nodes, hence $\sum_{v \in V} d(v)=0$, thus the handshaking lemma is true on G.
Induction step: for each k, we assume that the statement holds true for k i.e. $\sum_{v \in V} d(v)=2 k$ for any graph $G=(V, E)$ where $|V|=n$ and $|E|=k$ (induction hypothesis IH).
Now, we need to prove that the statement holds true for $k+1$ i.e. we want to show that $\sum_{v \in V} d(v)=2(k+1)$ for any $G=(V, E)$ where $|V|=n$ and $|E|=k+1$.
Indeed, first we consider a graph $G=(V, E)$ where $|V|=n$ and $|E|=k+1$. Let $\{u, v\}$ be an edge in G. Let $G^{\prime}=\left(V, E^{\prime}\right)$ where $E^{\prime}=E \backslash\{x, y\}$ i.e. G^{\prime} is the graph obtained after removing an edge $\{x, y\}$ from G. Note that we denote by $d_{G}(v), d_{G^{\prime}}(v)$ the degree of node v in G and G^{\prime} respectively.
First we notice that G^{\prime} has k edges, hence by IH $\sum_{v \in V} d_{G^{\prime}}(v)=2 k$.
Moreover, $\sum_{v \in V} d_{G^{\prime}}(v)=\sum_{v \in V \backslash\{x, y\}} d_{G^{\prime}}(v)+d_{G^{\prime}}(x)+d_{G^{\prime}}(y)=\sum_{v \in V \backslash\{x, y\}} d_{G}(v)+\left(d_{G}(x)-\right.$ $1)+\left(d_{G}(y)-1\right)=\sum_{v \in V \backslash\{x, y\}} d_{G}(v)+d_{G}(x)+d_{G}(y)-2=\sum_{v \in V} d_{G}(v)-2$.
Thus $\sum_{v \in V} d_{G}(v)=\sum_{v \in V} d_{G^{\prime}}(v)+2 \stackrel{\mathrm{IH}}{=} 2 k+2=2(k+1)$
Hence, the statement holds true for $k+1$, which ends our induction proof.
(Note that how many cases we should divide into, if we have started off from induction hypothesis to build up (k+1)th statement.)
2. Let $G=(V, E)$ be a graph. We argue by contradiction. Assume that $\forall v \in V, d(v)$ is odd. Now since G has odd number of nodes, we notice that $\sum_{v \in V} d(v)$ is the sum of an odd number of odd numbers, which is odd. But by the handshaking lemma $\sum_{v \in V} d(v)$ must be even. This is a contradiction. Thus our assumption must have been false and hence there must exist a node in G with even degree.

Exercise 4: Graphs (Part 2)

A graph $G=(V, E)$ is said to be connected if for every pair of vertices $u, v \in V$ such that $u \neq v$ there exists a path in G connecting u to v.

1. Prove that if G is connected, then for any two nonempty subsets V_{1} and V_{2} of V such that $V_{1} \cup V_{2}=V$ and $V_{1} \cap V_{2}=\phi$, there exists an edge joining a vertex in V_{1} to a vertex in V_{2}.
2. Let G be a simple, connected graph and P be a path of the longest length ℓ in G. Show that if the two ends of P are adjacent, then $V=V(P)$, where $V(P)$ is the set of vertices of P.
Hint: Try to argue by contradiction.

Sample Solution

Definition: a family of sets $V_{1}, V_{2}, \ldots, V_{k}$, where k is some positive integer is called a partition of V if and only if all of the following conditions hold:

- For all $i \in\{1,2 \ldots, k\}, V_{i}$ is a nonempty subset of V
- $\bigcup_{i=1}^{k} V_{i}=V$
- $V_{i} \cap V_{j}=\phi$ for all $i, j \in\{1,2 \ldots, k\}$ such that $i \neq j$

Intuitively you can think of a partition of a set V as a set of non-empty subsets of V such that every element $x \in V$ is in exactly one of these subsets.

1. Let V_{1} and V_{2} be any two non empty subsets of V such that $V_{1} \cup V_{2}=V$ and $V_{1} \cap V_{2}=\phi$ (i.e. V_{1} and V_{2} is a partition of the vertex set V). Let $u \in V_{1}$ and $v \in V_{2}$. Since G is connected, there exists a path in G joining u to v. For this to happen, there must then exist an edge joining some vertex in V_{1} to some other vertex in V_{2}, which ends our proof.
2. Notations and definitions: A path P on n vertices say $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a graph whose set of edges is $\left\{\left\{v_{i}, v_{i+1}\right\} ; 1 \leq i \leq n-1\right\}$ and to describe it we write $P=v_{1} v_{2} \ldots v_{n}$.
Let v_{i} and v_{j} be any two vertices of P, where $1 \leq i \leq j \leq n$, then we denote by $P_{\left[v_{i}, v_{j}\right]}=$ $v_{i} v_{i+1} \ldots v_{j}$ the subpath of P with ends v_{i} and v_{j}.

Solution: We argue by contradiction. Suppose $V \neq V(P)$, where we define $V(P):=\left\{v_{1}, v_{2}, \ldots, v_{\ell+1}\right\}$, then there exists at least one vertex in V that is not in $V(P)$. Hence, we can define $V_{1}:=$ $V \backslash V(P) \neq \phi$ and $V_{2}:=V(P) \neq \phi$. Notice that V_{1} and V_{2} from a partition of V. Moreover since G is connected, by the previous part we deduce that there exists an edge joining a vertex in V_{1} (call it x) to a vertex v_{k} in $V_{2}=V(P)$, where $1 \leq k \leq \ell+1$. Let $P=v_{1} v_{2} \ldots v_{\ell+1}$ and $e=\left\{x, v_{k}\right\}$. Since the two ends of P are adjacent i.e. $\left\{v_{1}, v_{\ell+1}\right\} \in E$, we can define another path $P^{\prime}=x v_{k} P_{\left[v_{k+1}, v_{\ell}\right]} v_{\ell+1} v_{1} P_{\left[v_{2}, v_{k-1}\right]}$. Notice that P^{\prime} is a path in G of length $\ell+1$, which is a contradiction. Hence, our supposition is incorrect. Thus, $V=V(P)$.

