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Exercise 1: Validness of Mathematical Induction (Bonus Points)

To prove that a statement P (n) is true for all n ∈ N, mathematical induction can be stated as

(P (1) ∧ ∀k(P (k) ⇒ P (k + 1))) ⇒ ∀nP (n)

P (1) stands for the Base Case, and P (k) ⇒ P (k + 1) for Induction Hypothesis. The statement above
is valid. i.e) if Antecedent is true, then the Consequent can’t be false. ,which justifies the use of Ma-
thematical Induction in this case. Using Contradiction, prove the validity of mathematical induction.
In other words, Using contradiction, prove that if P (1) ∧ ∀k(P (k) ⇒ P (k + 1)) is true, then ∀nP (n)
necessarily follows.
Use the Well-Ordering Property of natural numbers to help finding a contradiction.
(Hint : Well-Ordering Property of natural numbers states that every nonempty subset of natural
numbers has a least element.)

Sample Solution

By negating the consequent ∀nP (n), assume there exists n ∈ N such that P (n) is false.
Let S be the set of natural numbers that make P (n) false.
S has a least element according to the well-ordering property of natural numbers. Let’s call this least
element m.
As m ̸= 1, so m > 1, which makes m − 1 ∈ N. m − 1 /∈ S, as m is the least element of S. According
to the ∀k(P (k) ⇒ P (k + 1)), P (m) has to be true, and this contradicts the assumption we’ve made
earlier.

Exercise 2: Miscellaneous Mathematical Proofs (2+3+3+1 Points)

1. Let S(n) =
∑n

i=1 i be the sum of the first n natural numbers and C(n) =
∑n

i=1 i
3 be the sum

of the first n cubes. Use mathematical induction to prove the following interesting conclusion:
C(n) = S2(n) for every n.

2. Let A,B, and C be subsets of U . Which of the following statements is true? Justify.

• If A ∩B = A ∩ C, then B = C.

• If A ∪B = A ∪ C, then B = C.

• A ∪B = A ∩B, where A is the complement of A.



3. Let A1, A2, ..., An be nonempty subsets of a Universal Set U , where n is any positive integer,
and n ≥ 2. Using the result of above exercise, i.e. A1 ∪A2 = A1∩A2 . Prove a generalized result

n⋃
i=1

Ai =

n⋂
i=1

Ai

using induction.

4. Let A1, A2, ..., Ak be nonempty subsets of U , where k is any positive integer. Construct a non-
empty subset A ⊆ U such that A ∩Ai ̸= ϕ, for all i ∈ {1, 2, ..., k}.

Sample Solution

1. Base case: for n = 1, 13 = (1)2 is true.

Induction step: for each k ≥ 1, we assume that the statement holds true for k i.e. C(k) = S2(k)
(induction hypothesis IH). Now, we need to prove that the statement holds true for k+1 i.e. we
want to show that C(k + 1) = S2(k + 1).

Indeed first, we recall that S(n) =
∑n

i=1 i = n(n+1)
2 , hence S2(k + 1) =

( (k+1)(k+2)
2 )2 =

(k+1)2(k+2)2

4 .

Next, we have that C(k + 1) =
∑k

i=1 i
3 + (k + 1)3 = C(k) + (k + 1)3

IH
= S2(k) + (k + 1)3 =(k(k+1)

2 )2 + (k + 1)3 =
(k2(k+1)2

4 ) + (k + 1)3 = (k+1)2

4 (k2 + 4k + 4) = (k+1)2

4 (k + 2)2 = S2(k + 1).
Hence, the statement holds true for k + 1, which ends our induction proof.

2. • False. We give a counterexample: take A = {1, 2, 3}, B = {1, 4} and C = {1, 5}, hence
A ∩B = A ∩ C and B ̸= C.

• False. We give a counterexample: take A = {1, 2}, B = {1, 3} and C = {2, 3}, hence
A ∪B = A ∪ C and B ̸= C.

• (De Morgan’s law). Indeed,

x ∈ A ∪B ⇐⇒ x /∈ A ∪B ⇐⇒ x /∈ A and x /∈ B ⇐⇒ x ∈ A and
x ∈ B ⇐⇒ x ∈ A ∩B

hence, A ∪B = A ∩B.

3. Base case: for n=2, A1 ∪A2 = A1 ∩A2.

Induction Hypothesis : for arbitrary k ≥ 2,
⋃k

i=1Ai =
⋂k

i=1Ai, where A1, A2...Ak are subsets of
U . We assume this to be true for every possible collection of these k subsets of U. Using this,
we want this to be true, also for every possible collection of k+1 subsets of U.
Induction Step(one version) : Starting from induction hypothesis, pick arbitrary Ak+1 and add
Ak+1 for both sides.

k⋃
i=1

Ai ∩Ak+1 =

k⋂
i=1

Ai ∩Ak+1

In order to show
⋃k

i=1Ai ∩Ak+1 =
⋂k+1

i=1 Ai,

k⋃
i=1

Ai ∩Ak+1
IH
=

k⋂
i=1

Ai ∩Ak+1 =

k+1⋂
i=1

Ai

Note that for this problem, we have to show for all the possible statements P (n). If you take a
look at above way of proving it, it starts from induction hypothesis to build up (k+1)th object.
If you do it this way, you need to make sure that you build all the possible objects to prove the
statement. This problem was easy because the cardinality of (k + 1)th object is just +1 from
(k)th object. So we only need to pick one arbitrary subset to go to (k + 1)th object.



But often, this method of building up from the induction hypothesis not always works well,
simply because there could be many ways to build up (k + 1)th objects, and you need to prove
for all of them. This is cumbersome and this often leads you to an incorrect proof. So another
version, which is stated below, would be a better and natural way to prove, as it starts from an
arbitrary object Ak+1(So already covering all the (k + 1)th objects) and try to decompose it so
that we could utilize the induction hypothesis.

Induction Step(recommended version) : for some list of subsets A1, ...Ak+1,

WTS:
⋃k+1

i=1 Ai =
⋂k+1

i=1 Ai

k+1⋃
i=1

Ai =

k⋃
i=1

Ai ∪Ak+1 =

k⋃
i=1

Ai ∩Ak+1
IH
=

k⋂
i=1

Ai ∩Ak+1 =

k+1⋂
i=1

Ai

4. We construct A by choosing one element from each Ai, for all i ∈ {1, 2, ..., k}.

Exercise 3: Graphs (Part 1) (3+2 Points)

A simple graph is a graph without self loops, i.e., every edge of the graph is an edge between two
distinct nodes. The degree d(v) of a node v ∈ V in an undirected graph G = (V,E) is the number of
its neighbors, i.e, d(v) = |{u ∈ V | {v, u} ∈ E}|. Let m ≥ 0 denote the number of edges in graph G.

1. Prove the handshaking lemma i.e.
∑

v∈V d(v) = 2m via mathematical induction on m for any
simple graph G = (V,E).

2. Show that every simple graph with an odd number of nodes contains a node with even degree.

Sample Solution

1. We prove the handshaking lemma by mathematical induction on m.

Base step: let G = (V,E) be a graph where |V | = n and |E| = m = 0. Notice that G is the
empty graph on n nodes, hence

∑
v∈V d(v) = 0, thus the handshaking lemma is true on G.

Induction step: for each k, we assume that the statement holds true for k i.e.
∑

v∈V d(v) = 2k
for any graph G = (V,E) where |V | = n and |E| = k (induction hypothesis IH).
Now, we need to prove that the statement holds true for k + 1 i.e. we want to show that∑

v∈V d(v) = 2(k + 1) for any G = (V,E) where |V | = n and |E| = k + 1.

Indeed, first we consider a graph G = (V,E) where |V | = n and |E| = k + 1. Let {u, v} be an
edge in G. Let G′ = (V,E′) where E′ = E\{x, y} i.e. G′ is the graph obtained after removing
an edge {x, y} from G. Note that we denote by dG(v), dG′(v) the degree of node v in G and G′

respectively.

First we notice that G′ has k edges, hence by IH
∑

v∈V dG′(v) = 2k.

Moreover,
∑

v∈V dG′(v) =
∑

v∈V \{x,y} dG′(v) + dG′(x) + dG′(y) =
∑

v∈V \{x,y} dG(v) + (dG(x) −
1) + (dG(y)− 1) =

∑
v∈V \{x,y} dG(v) + dG(x) + dG(y)− 2 =

∑
v∈V dG(v)− 2.

Thus
∑

v∈V dG(v) =
∑

v∈V dG′(v) + 2
IH
= 2k + 2 = 2(k + 1)

Hence, the statement holds true for k + 1, which ends our induction proof.

(Note that how many cases we should divide into, if we have started off from induction hypothesis
to build up (k+1)th statement.)

2. Let G = (V,E) be a graph. We argue by contradiction. Assume that ∀v ∈ V , d(v) is odd. Now
since G has odd number of nodes, we notice that

∑
v∈V d(v) is the sum of an odd number of

odd numbers, which is odd. But by the handshaking lemma
∑

v∈V d(v) must be even. This is a
contradiction. Thus our assumption must have been false and hence there must exist a node in
G with even degree.



Exercise 4: Graphs (Part 2) (2+4 Points)

A graph G = (V,E) is said to be connected if for every pair of vertices u, v ∈ V such that u ̸= v there
exists a path in G connecting u to v.

1. Prove that if G is connected, then for any two nonempty subsets V1 and V2 of V such that
V1 ∪ V2 = V and V1 ∩ V2 = ϕ, there exists an edge joining a vertex in V1 to a vertex in V2.

2. Let G be a simple, connected graph and P be a path of the longest length ℓ in G. Show that if
the two ends of P are adjacent, then V = V (P ), where V (P ) is the set of vertices of P .
Hint: Try to argue by contradiction.

Sample Solution

Definition: a family of sets V1, V2, ..., Vk, where k is some positive integer is called a partition of V if
and only if all of the following conditions hold:

• For all i ∈ {1, 2..., k}, Vi is a nonempty subset of V

•
⋃k

i=1 Vi = V

• Vi ∩ Vj = ϕ for all i, j ∈ {1, 2..., k} such that i ̸= j

Intuitively you can think of a partition of a set V as a set of non-empty subsets of V such that every
element x ∈ V is in exactly one of these subsets.

1. Let V1 and V2 be any two non empty subsets of V such that V1 ∪ V2 = V and V1 ∩ V2 = ϕ (i.e.
V1 and V2 is a partition of the vertex set V ). Let u ∈ V1 and v ∈ V2. Since G is connected, there
exists a path in G joining u to v. For this to happen, there must then exist an edge joining some
vertex in V1 to some other vertex in V2, which ends our proof.

2. Notations and definitions: A path P on n vertices say {v1, v2, ..., vn} is a graph whose set of
edges is {{vi, vi+1}; 1 ≤ i ≤ n− 1} and to describe it we write P = v1v2...vn.
Let vi and vj be any two vertices of P , where 1 ≤ i ≤ j ≤ n, then we denote by P[vi,vj ] =
vivi+1...vj the subpath of P with ends vi and vj .

Solution: We argue by contradiction. Suppose V ̸= V (P ), where we define V (P ) := {v1, v2, ..., vℓ+1},
then there exists at least one vertex in V that is not in V (P ). Hence, we can define V1 :=
V \V (P ) ̸= ϕ and V2 := V (P ) ̸= ϕ. Notice that V1 and V2 from a partition of V . Moreover
since G is connected, by the previous part we deduce that there exists an edge joining a vertex
in V1 ( call it x) to a vertex vk in V2 = V (P ), where 1 ≤ k ≤ ℓ + 1. Let P = v1v2...vℓ+1 and
e = {x, vk}. Since the two ends of P are adjacent i.e. {v1, vℓ+1} ∈ E, we can define another
path P ′ = xvkP[vk+1,vℓ]vℓ+1v1P[v2,vk−1]. Notice that P ′ is a path in G of length ℓ+ 1, which is a
contradiction. Hence, our supposition is incorrect. Thus, V = V (P ).


