Algorithm Theory, Winter Term 2015/16 Problem Set 2

hand in (hard copy or electronically) by 10:15, Thursday November 5, 2015, tutorial session will be on November 9, 2015

Exercise 1: Multiplication of Polynomials ($2+7$ points)

Given a polynomial $p(x)$:

$$
p(x)=x^{3}-x^{2}+2 x+1
$$

- Compute $\operatorname{DFT}_{4}(a)$, where a is the coefficient vector of polynomial p.
- Compute the coefficient representation of $p(x)^{2}$ by using the FFT algorithm from the lecture.

Remark: Instead of using exact numbers for the point-wise evaluations (which involves irrational numbers) you can also round numbers to, say, $3+$ digits after the decimal point. This also reflects what happens in an implemented version of FFT, as exact algebraic evaluations would not lead to an $O(n \log n)$ running time. Those unfamiliar with complex numbers should ask fellow students for some help - calculating roots of unity and multiplying two complex numbers is all you need for this exercise.

Exercise 2: Polynomial to the power of \boldsymbol{k} (3 points)

Given a polynomial $p(x)$ of degree n and an integer $k \geq 2$, the goal of this problem is to compute the $k^{\text {th }}$ power $p^{k}(x)$ of $p(x)$ in an efficient way. For simplicity, we assume that k is a power of 2 , that is, $k=2^{\ell}$ for some integer $\ell \geq 1$.

- Describe an efficient algorithm to compute $p^{k}(x)$ polynomial using the Fast Polynomial Multiplication algorithm from the lecture.
- What is the asymptotic runtime of your algorithm in terms of k and n ? Explain your answer.

