Algorithm Theory, Winter Term 2015/16 Problem Set 3

hand in (hard copy or electronically) by 10:15, Thursday November 12, 2015, tutorial session will be on November 16, 2015

Exercise 1: Greedy Algorithm (6 points)

In the following, a unit fraction is a fraction where the numerator is 1 and the denominator is some integer larger than 1. For example $1 / 4$ or $1 / 384$ are unit fractions.
It is well-known that every rational number $0<q<1$ can be expressed as a sum of pairwise distinct unit fractions, e.g., we can write $\frac{4}{13}$ as

$$
\frac{4}{13}=\frac{1}{5}+\frac{1}{13}+\frac{1}{32}+\frac{1}{65}
$$

Interestingly such a decomposition into distinct unit fractions can be computed using a simple greedy algorithm.
In the following, assume that you are given two positive integers a and b such that $b>a$. Design a greedy algorithm to compute integers $0<c_{1}<c_{2}<\cdots<c_{k}$ such that

$$
\frac{a}{b}=\frac{1}{c_{1}}+\frac{1}{c_{2}}+\cdots+\frac{1}{c_{k}}
$$

Prove that your greedy algorithm always works and that it decomposes $\frac{a}{b}$ into at most a unit fractions. You can assume that your algorithm can deal with arbitrarily large integer numbers. Note that for the fraction $\frac{4}{13}$, the standard greedy algorithm computes a decomposition which is different from the one given above.

Exercise 2: Matroids (6 points)

We have defined matroids in the lecture. For a matroid (E, I), a maximal independent set $S \in I$ is an independent set that cannot be extended. Thus, for every element $e \in E \backslash S$, the set $S \cup\{e\} \notin I$.
a) Show that all maximal independent sets of a matroid (E, I) have the same size. (This size is called the rank of a matroid.)
b) Consider the following greedy algorithm: The algorithm starts with an empty independent set $S=\emptyset$. Then, in each step the algorithm extends S by the minimum weight element $e \in E \backslash S$ such that $S \cup e \in I$, until S is a maximal independent set. Show that the algorithm computes a maximal independent set of minimum weight.
c) Let E be any finite subset of the natural numbers \mathbb{N} and $k \in \mathbb{N}$ be any natural number. Define a collection of sets $I:=\{X \subseteq E: \forall x \neq y \in X, x \not \equiv y(\bmod k)\}$. Show that (E, I) is a matroid.

