
Albert-Ludwigs-Universität, Inst. für Informatik
Prof. Dr. Fabian Kuhn
H. Ghodselahi, O. Saukh, M. Ahmadi November 2, 2015

Algorithm Theory, Winter Term 2015/16

Problem Set 1 - Sample Solution

Exercise 1: Complexity (2+2 points)

Characterize the relationship between f(n) and g(n) in the following two examples by using the O,
Θ, or Ω notation. Hence, state if f(n) = Θ(g(n)) and otherwise if f(n) = O(g(n)) or f(n) = Ω(g(n)).
Explain your answers (formally)!

a) f (n) = nε (for any positive constant ε < 1
2) g (n) = log n

b) f (n) = log n! g (n) = n log n

Solution:

a) f(n) ∈ Ω(g(n)).

Let us assume that the base of logarithm in g(n) is some positive constant c. Moreover, consider
some positive constant c′ > 1. Then,

lim
n→∞

logc n

nε
= lim

n→∞

logc′ n
logc′ c

(c′ε)logc′ n
= lim

n→∞

logc′ n

logc′ c · (c′ε)logc′ n
(1)
= 0.

(1) c′ε is a constant greater than 1.

From the above inequality, it follows that f(n) /∈ O((g(n)). Therefore, we have f(n) /∈ Θ(g(n)).

Note: Different logarithm base just leads to a constant difference in growth speed.

b) f(n) ∈ Θ(g(n)).

1) f(n) ∈ O(g(n))

f(n) = log n! = log(n · (n− 1) · (n− 2) . . . 1) = log n+ log(n− 1) + · · ·+ log 1

g(n) = n log n = log n+ log n+ · · ·+ log n︸ ︷︷ ︸
n times

⇒ f(n) ≤ g(n) for any n > 1. Therefore, based on the formal definition of the big O notation,
by taking c = 1 and n0 = 1 we have f(n) ∈ O(g(n)).

2) f(n) ∈ Ω(g(n))

lim
n→∞

f(n)

g(n)
= lim

n→∞

n∑
i=1

log(i)

n log n
≥ lim

n→∞

n∑
i=n/2

log(i)

n log n
≥ lim

n→∞

n
2 · log(n/2)

n log n
=

1

2
> 0

From (1) and (2), we can conclude that f(n) ∈ Θ(n).

1



Exercise 2: Recurrence Relations (2+2 points)

a) Guess the solution of the following recurrence relation by repeated substitution.

T (n) ≤ 2 · T (
n

2
) + c · n log2 n, T (1) ≤ c

where c > 0 is a constant.

b) Use induction to show that your guess is correct.

Solution:

a) First, by using substitution, we achieve a guess for the answer of the inequality.

T (n) ≤ 2T (n/2) + cn log n

≤ 2
(
2T (n/4) + cn/2(log n− 1)

)
+ cn log n

≤ 4T (n/4) + 2cn log n− cn

≤ 4
(
2T (n/8)cn/4(log n− 2)

)
+ 2cn log n− cn

≤ 8T (n/8) + 3cn log n− 3cn

...

≤ 2iT (n/2i) + icn log n−
i−1∑
j=1

j · cn

By considering i = log n,

T (n) ≤ cn+
1

2
cn log2 n+

1

2
cn log n

b) Here we use induction to prove our guess achieved by induction.

Induction base: T (1) ≤ c(1) + 1
2c(1) log2 1 + 1

2c(1) log 1 = c ≤ c X

Induction hypothesis: ∀n′ < n : T (n′) ≤ cn′ + 1
2cn
′ log2 n′ + 1

2cn
′ log n′

Induction step:

T (n) ≤ 2T (n/2) + cn log n

≤ 2

(
c
n

2
+

1

2
c
n

2
log2

n

2
+

1

2
c
n

2
log(

n

2
)

)
+ cn log n

≤ cn+
1

2
cn log2 n+

1

2
cn log n X

From the induction we have T (n) ≤ cn+ 1
2cn log2 n+ 1

2cn log n, for all n ≥ 1.

Exercise 3: Maximum Sum Subsequence (4 points)

Given an integer array A = {x0, x1, . . . , xn−1} where xi ∈ Z for all i ∈ {0, 1, . . . , n− 1} (note that the
values xi can be negative).

Devise an efficient divide-and-conquer algorithm to find a contiguous subsequence of elements in A
with maximum possible sum. That is, you need to find indices 0 ≤ i1 ≤ i2 ≤ n− 1 such that the sum∑i2

i=i1
xi is maximized. Write down the recurrence relation which describes the running time of your

algorithm and use the Master theorem to derive the running time of your algorithm.

Hint: There is a divide-and-conquer solution which runs in time O(n), an O(n log n) solution gives
partial points. In order to find an O(n) algorithm, it might help to first design an O(n log n) algorithm.

2



Solution:

For simplicity let us assume that n is power of 2.

• Divide step: In this step we simply divide the given array X into two equal-sized arrays Xl

and Xr. This step can be done in constant time.

• Conquer step: In this step we solve the problem recursively for each of the two equal-sized
subarrays.
In solving the problem for each subarray, we find the following three subsequences:

– S - The contiguous subsequence with maximum sum (green in Figure 1).

– L - The contiguous subsequence with maximum sum which starts from the first element of
the subarray (orange in Figure 1).

– R - The contiguous subsequence with maximum sum which ends on the last element in the
subarray (red in Figure 1).

Moreover, for subarrays of size one consisting of one element x, we apparently have S = L =
R = {x}.

• Combine step: In this step we intend to use the solutions for the two subarrays Xl and Xr

and obtain the solution for the array consisting these two subarrays.
Let us assume that the solution for the left subarray is {Sl, Ll, Rl} and for the right subarray is
{Sr, Lr, Rr}. Now we would like to obtain {S,L,R} for the array consisting these two subarrays.

We can simply find L and R. L is either Ll or the concatenation of Xl and Lr (the one with
maximum sum). Similarly, R is either Rr or the concatenation of Rl and Xr.

The only thing which is left is to find S. S is one of the following three possibilities that has the
maximum sum.

a) Sl

b) Sr

c) The concatenation of Rl and Lr

The combine step only needs a constant number of comparisons. Therefore, both the divide and
combine steps can be done in constant time.

Figure 1: subarrays that need to be obtained in every recursion step.

The following pseudo code explains the algorithm in more details:

// Elements in structure type to return.
struct Solution {
int Ll, Lr; // start and end indices of L.
int Rl, Rr; // start and end indices of R.
int Sr, Sl; // start and end indices of S.
int Al, Ar; // start and end indices of A.
int Ssum, Lsum, Rsum, Asum; // sums of elements
}

Algorithm 1: MaxSumSubsequence(array A, length of array n)

Solution sol = getSolution(A)
return (start, end, sum)

3



Algorithm 2: DCMaxSum(A, Al, Ar)

Solution loc;
if Al −Ar == 1 then

loc.Ll = Al; loc.Lr = Ar; loc.Ls = A[Al];
loc.Rl = Al; loc.Rr = Ar; loc.RS = A[Al];
loc.Sl = Al; loc.Sr = Ar; loc.Ss = A[Al];
loc.Al = Al; loc.Ar = Ar; loc.As = A[Al];
return loc;

else
Solution left, right;
left = DCMaxSum(A,Al, (Ar −Al)/2);
right = DCMaxSum(A, (Ar −Al)/2, Ar);
loc.Ll = left.Ll;
loc.Rr = right.Rr;
loc.Al = left.Al; loc.Ar = right.Ar; loc.Asum = left.Asum + right.Asum;
if left.Lsum > left.Asum + right.Lsum then

loc.Lr = left.Lr; loc.Lsum = left.Lsum
else

loc.Lr = right.Lr; loc.Lsum = left.Asum + right.Lsum;

if right.Rsum > right.Asum + left.Rsum then
loc.Rl = right.Rl; loc.Rsum = right.Rsum;

else
loc.Rl = left.Rl; loc.Rsum = right.Asum + left.Rsum;

return sol

Analysis: We can conclude that in each step, the given subarray is divided into two equal-sized
subarrays in constant time and the two subarrays can be solved recursively. In addition, the
combine step also takes constant time to be done. If we assume that divide and conquer are done
in constant time c, we have the following recurrence relation as running time of the algorithm:

T (n) = 2 · T (
n

2
) + c.

It is also clear from above that solving the problem instance of size 1 needs a constant amount
of time, so it is concluded that T (1) ∈ O(1). Using the master theorem it can be concluded that
the running time is O(n).

4


