Algorithm Theory, Winter Term 2015/16 Problem Set 1 - Sample Solution

Exercise 1: Complexity ($2+2$ points)

Characterize the relationship between $f(n)$ and $g(n)$ in the following two examples by using the O, Θ, or Ω notation. Hence, state if $f(n)=\Theta(g(n))$ and otherwise if $f(n)=O(g(n))$ or $f(n)=\Omega(g(n))$. Explain your answers (formally)!
a) $f(n)=n^{\epsilon} \quad$ (for any positive constant $\left.\epsilon<\frac{1}{2}\right) \quad g(n)=\log n$
b) $f(n)=\log n$!
$g(n)=n \log n$

Solution:

a) $f(n) \in \Omega(g(n))$.

Let us assume that the base of logarithm in $g(n)$ is some positive constant c. Moreover, consider some positive constant $c^{\prime}>1$. Then,

$$
\lim _{n \rightarrow \infty} \frac{\log _{c} n}{n^{\epsilon}}=\lim _{n \rightarrow \infty} \frac{\frac{\log _{c^{\prime}} n}{\log _{c^{\prime}} c}}{\left(c^{\prime \epsilon}\right)^{\log _{c^{\prime}} n}}=\lim _{n \rightarrow \infty} \frac{\log _{c^{\prime}} n}{\log _{c^{\prime}} c \cdot\left(c^{\prime \epsilon}\right)^{\log _{c^{\prime}} n}} \stackrel{(1)}{=} 0
$$

(1) $c^{\prime \epsilon}$ is a constant greater than 1.

From the above inequality, it follows that $f(n) \notin O((g(n))$. Therefore, we have $f(n) \notin \Theta(g(n))$.
Note: Different logarithm base just leads to a constant difference in growth speed.
b) $f(n) \in \Theta(g(n))$.

1) $f(n) \in O(g(n))$
$f(n)=\log n!=\log (n \cdot(n-1) \cdot(n-2) \ldots 1)=\log n+\log (n-1)+\cdots+\log 1$
$g(n)=n \log n=\underbrace{\log n+\log n+\cdots+\log n}_{n \text { times }}$
$\Rightarrow f(n) \leq g(n)$ for any $n>1$. Therefore, based on the formal definition of the big O notation, by taking $c=1$ and $n_{0}=1$ we have $f(n) \in O(g(n))$.
2) $f(n) \in \Omega(g(n))$

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} \log (i)}{n \log n} \geq \lim _{n \rightarrow \infty} \frac{\sum_{i=n / 2}^{n} \log (i)}{n \log n} \geq \lim _{n \rightarrow \infty} \frac{\frac{n}{2} \cdot \log (n / 2)}{n \log n}=\frac{1}{2}>0
$$

From (1) and (2), we can conclude that $f(n) \in \Theta(n)$.

Exercise 2: Recurrence Relations (2+2 points)

a) Guess the solution of the following recurrence relation by repeated substitution.

$$
T(n) \leq 2 \cdot T\left(\frac{n}{2}\right)+c \cdot n \log _{2} n, \quad T(1) \leq c
$$

where $c>0$ is a constant.
b) Use induction to show that your guess is correct.

Solution:

a) First, by using substitution, we achieve a guess for the answer of the inequality.

$$
\begin{aligned}
T(n) & \leq 2 T(n / 2)+c n \log n \\
& \leq 2(2 T(n / 4)+c n / 2(\log n-1))+c n \log n \\
& \leq 4 T(n / 4)+2 c n \log n-c n \\
& \leq 4(2 T(n / 8) c n / 4(\log n-2))+2 c n \log n-c n \\
& \leq 8 T(n / 8)+3 c n \log n-3 c n
\end{aligned}
$$

$$
\vdots
$$

$$
\leq 2^{i} T\left(n / 2^{i}\right)+i c n \log n-\sum_{j=1}^{i-1} j \cdot c n
$$

By considering $i=\log n$,

$$
T(n) \leq c n+\frac{1}{2} c n \log ^{2} n+\frac{1}{2} c n \log n
$$

b) Here we use induction to prove our guess achieved by induction.

Induction base: $T(1) \leq c(1)+\frac{1}{2} c(1) \log ^{2} 1+\frac{1}{2} c(1) \log 1=c \leq c \checkmark$
Induction hypothesis: $\forall n^{\prime}<n: T\left(n^{\prime}\right) \leq c n^{\prime}+\frac{1}{2} c n^{\prime} \log ^{2} n^{\prime}+\frac{1}{2} c n^{\prime} \log n^{\prime}$
Induction step:

$$
\begin{aligned}
T(n) & \leq 2 T(n / 2)+c n \log n \\
& \leq 2\left(c \frac{n}{2}+\frac{1}{2} c \frac{n}{2} \log ^{2} \frac{n}{2}+\frac{1}{2} c \frac{n}{2} \log \left(\frac{n}{2}\right)\right)+c n \log n \\
& \leq c n+\frac{1}{2} c n \log ^{2} n+\frac{1}{2} c n \log n \checkmark
\end{aligned}
$$

From the induction we have $T(n) \leq c n+\frac{1}{2} c n \log ^{2} n+\frac{1}{2} c n \log n$, for all $n \geq 1$.

Exercise 3: Maximum Sum Subsequence (4 points)

Given an integer array $A=\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$ where $x_{i} \in \mathbb{Z}$ for all $i \in\{0,1, \ldots, n-1\}$ (note that the values x_{i} can be negative).
Devise an efficient divide-and-conquer algorithm to find a contiguous subsequence of elements in A with maximum possible sum. That is, you need to find indices $0 \leq i_{1} \leq i_{2} \leq n-1$ such that the sum $\sum_{i=i_{1}}^{i_{2}} x_{i}$ is maximized. Write down the recurrence relation which describes the running time of your algorithm and use the Master theorem to derive the running time of your algorithm.
Hint: There is a divide-and-conquer solution which runs in time $O(n)$, an $O(n \log n)$ solution gives partial points. In order to find an $O(n)$ algorithm, it might help to first design an $O(n \log n)$ algorithm.

Solution:

For simplicity let us assume that n is power of 2 .

- Divide step: In this step we simply divide the given array X into two equal-sized arrays X_{l} and X_{r}. This step can be done in constant time.
- Conquer step: In this step we solve the problem recursively for each of the two equal-sized subarrays.
In solving the problem for each subarray, we find the following three subsequences:
- S - The contiguous subsequence with maximum sum (green in Figure 1).
- L - The contiguous subsequence with maximum sum which starts from the first element of the subarray (orange in Figure 1).
- R - The contiguous subsequence with maximum sum which ends on the last element in the subarray (red in Figure 1).
Moreover, for subarrays of size one consisting of one element x, we apparently have $S=L=$ $R=\{x\}$.
- Combine step: In this step we intend to use the solutions for the two subarrays X_{l} and X_{r} and obtain the solution for the array consisting these two subarrays.
Let us assume that the solution for the left subarray is $\left\{S_{l}, L_{l}, R_{l}\right\}$ and for the right subarray is $\left\{S_{r}, L_{r}, R_{r}\right\}$. Now we would like to obtain $\{S, L, R\}$ for the array consisting these two subarrays.
We can simply find L and $R . L$ is either L_{l} or the concatenation of X_{l} and L_{r} (the one with maximum sum). Similarly, R is either R_{r} or the concatenation of R_{l} and X_{r}.
The only thing which is left is to find $S . S$ is one of the following three possibilities that has the maximum sum.
a) S_{l}
b) S_{r}
c) The concatenation of R_{l} and L_{r}

The combine step only needs a constant number of comparisons. Therefore, both the divide and combine steps can be done in constant time.

Figure 1: subarrays that need to be obtained in every recursion step.
The following pseudo code explains the algorithm in more details:

```
// Elements in structure type to return.
struct Solution {
    int }\mp@subsup{L}{l}{},\mp@subsup{L}{r}{};///\mathrm{ start and end indices of L.
    int }\mp@subsup{R}{l}{},\mp@subsup{R}{r}{};///\mathrm{ start and end indices of R.
    int S}\mp@subsup{S}{r}{},\mp@subsup{S}{l}{};///\mathrm{ start and end indices of S.
    int }\mp@subsup{A}{l}{},\mp@subsup{A}{r}{};// start and end indices of A.
    int }\mp@subsup{S}{\mathrm{ sum }}{},\mp@subsup{L}{\mathrm{ sum }}{},\mp@subsup{R}{\mathrm{ sum }}{},\mp@subsup{A}{\mathrm{ sum }}{};// sums of elements
    }
```

```
Algorithm 1: MaxSumSubsequence(array \(A\), length of array \(n\) )
    Solution sol = getSolution(A)
    return (start, end, sum)
```

```
Algorithm 2: \(\operatorname{DCMaxSum}\left(A, A_{l}, A_{r}\right)\)
    Solution loc;
    if \(A_{l}-A_{r}=1\) then
        \(l o c . L_{l}=A_{l} ; l o c . L_{r}=A_{r} ; l o c . L_{s}=A\left[A_{l}\right] ;\)
        \(l o c . R_{l}=A_{l} ; l o c . R_{r}=A_{r} ; l o c . R_{S}=A\left[A_{l}\right] ;\)
        loc. \(S_{l}=A_{l} ;\) loc. \(. S_{r}=A_{r} ; l o c . S_{s}=A\left[A_{l}\right] ;\)
        loc. \(. A_{l}=A_{l} ;\) loc. \(. A_{r}=A_{r} ;\) loc. \(. A_{s}=A\left[A_{l}\right] ;\)
        return loc;
    else
        Solution left, right;
        left \(=\operatorname{DCMaxSum}\left(A, A_{l},\left(A_{r}-A_{l}\right) / 2\right)\);
        right \(=\operatorname{DCMaxSum}\left(A,\left(A_{r}-A_{l}\right) / 2, A_{r}\right) ;\)
        \(l o c . L_{l}=l e f t . L_{l} ;\)
        loc. \(R_{r}=\) right. \(R_{r} ;\)
        loc. \(. A_{l}=\) left.\(A_{l} ;\) loc. \(A_{r}=\) right..\(A_{r} ;\) loc. \(. A_{\text {sum }}=\) left. \(. A_{\text {sum }}+\) right.\(A_{\text {sum }} ;\)
        if left. \(L_{\text {sum }}>\) left. \(_{\text {sum }}+\) right. \(L_{\text {sum }}\) then
            loc. \(. L_{r}=l e f t . L_{r} ; l_{o c} . L_{s u m}=l e f t . L_{\text {sum }}\)
        else
            loc. \(L_{r}=\) right.\(L_{r} ;\) loc. \(L_{\text {sum }}=\) left \(. A_{\text {sum }}+\) right.\(L_{\text {sum }} ;\)
        if right. \(R_{\text {sum }}>\) right. \(A_{\text {sum }}+\) left. \(R_{\text {sum }}\) then
            loc. \(. R_{l}=\) right.\(R_{l} ;\) loc. \(. R_{\text {sum }}=\) right.\(R_{\text {sum }} ;\)
        else
            \(l o c . R_{l}=l e f t . R_{l} ; l o c . R_{\text {sum }}=\) right \(. A_{\text {sum }}+l e f t . R_{\text {sum }} ;\)
    return sol
```

Analysis: We can conclude that in each step, the given subarray is divided into two equal-sized subarrays in constant time and the two subarrays can be solved recursively. In addition, the combine step also takes constant time to be done. If we assume that divide and conquer are done in constant time c, we have the following recurrence relation as running time of the algorithm:

$$
T(n)=2 \cdot T\left(\frac{n}{2}\right)+c .
$$

It is also clear from above that solving the problem instance of size 1 needs a constant amount of time, so it is concluded that $T(1) \in O(1)$. Using the master theorem it can be concluded that the running time is $O(n)$.

