
Albert-Ludwigs-Universität, Inst. für Informatik
Prof. Dr. Fabian Kuhn
M. Ahmadi, A. R. Molla, and O. Saukh, November 10, 2015

Algorithm Theory, Winter Term 2015/16

Problem Set 2 - Sample Solution

Exercise 1: Multiplication of Polynomials (2 + 7 points)

Given a polynomial p(x):
p(x) = x3 − x2 + 2x + 1

• Compute DFT4(a), where a is the coefficient vector of polynomial p.

• Compute the coefficient representation of p(x)2 by using the FFT algorithm from the lecture.

Remark: Instead of using exact numbers for the point-wise evaluations (which involves irrational
numbers) you can also round numbers to, say, 3+ digits after the decimal point. This also reflects
what happens in an implemented version of FFT, as exact algebraic evaluations would not lead to an
O(n log n) running time. Those unfamiliar with complex numbers should ask fellow students for some
help - calculating roots of unity and multiplying two complex numbers is all you need for this exercise.

Solution

DFT polynomial representation

Consider the coefficient vector a in the reverse order i.e., a = (1, 2,−1, 1). It is known that DFT4(a) =(
p(ω0

4), p(ω1
4), p(ω2

4), p(ω3
4)
)T

is a vector containing the values of polynomial in each of four roots of
unity. The roots of unity are: ω0

4 = 1, ω1
4 = i, ω2

4 = −1, ω3
4 = −i. So, if we compute polynomial in

each of those points, we get: DFT4(a) = (3, 2 + i,−3, 2− i)

FFT Plynomial multiplication

To multiply two polynomials p and p′ of degree dp and dp′ respectively, by using interpolation, we
must evaluate those polynomials at dp + dp′ + 1 distinct points. In our case we have two identical
polynomials of degree 3, i.e., 7 points are needed. To use FFT, rounding up to the next power of 2 is
advised, as it simplifies the computation by more than the additional amount of work we need to do.
Thus, from now on, N = 8.
The coefficient vector for our polynomial p is a = (1, 2,−1, 1). For the upcoming multiplication of
p with itself we will calculate DFTN (a) which is the abbreviation for

(
p(ω0

8), . . . , p(ω7
8)
)
, i.e., the

evaluation of p at the 8 roots of unity. The polynomial p2 has a descriptive vector of length 7, but the
FFT algorithm is much clearer if all polynomials use the same length of their descriptive vector, and
it should be of length N , thus we redefine a := (1, 2,−1, 1, 0, 0, 0, 0).

1



Divide: First we need to split p into p0 and p1. Their respective vectors are a0 := (1,−1, 0, 0)
and a1 := (2, 1, 0, 0). Those we split further until we reach a descriptive vector of length 1: a00 :=
(1, 0),a01 := (−1, 0),a10 := (2, 0),a11 := (1, 0) and a000 := (1),a001 := (0),a010 := (−1),a011 :=
(0),a100 := (2),a101 := (0),a110 := (1),a111 := (0). Now, a polynomial of degree 0 is easy to
calculate, as it represents a constant function: DFT1(a000) = p000(ω

0
1) = 1. As you can see, we could

already have stopped at polynomials p00, . . . , p11, because they already represented polynomials of
degree 0. But let’s be meticulous:

k ωk
1 p000 p001 p010 p011 p100 p101 p110 p111

0 1 1 0 −1 0 2 0 1 0

(1, 2,−1, 1, 0, 0, 0, 0)

(1,−1, 0, 0)

(1, 0)

(1) (0)

(−1, 0)

(−1) (0)

(2, 1, 0, 0)

(2, 0)

(2) (0)

(1, 0)

(1) (0)

Conquer: Remember that our goal in each step is to combine two polynomials of degree n/2− 1 to
one polynomial of degree n − 1, but in the point-value representation, i.e., we need to get the values
of that polynomial at n different roots of unity. The formula for combination is

p(ωk
n) = p0(ω

k mod n/2
n/2 ) + ωk

n · p1(ω
k mod n/2
n/2 ).

E.g., p10(ω
1
2) = p10(−1) = p100(ω

1 mod 1
1 ) + ω1

2p101(ω
1 mod 1
1 ) = 2 + (−1) · 0 = 2.

k ωk
2 p00 p01 p10 p11

0 1 1 −1 2 1
1 −1 1 −1 2 1

The next step is slightly more complicated. E.g., p1(ω
3
4) = p1(−i) = p10(ω

3 mod 2
2 )+ω3

4p11(ω
3 mod 2
2 ) =

p10(−1) + (−i)p11(−1) = 2− i

k ωk
4 p0 p1

0 1 1 + 1 · (−1) 2 + 1 · 1
1 i 1 + i · (−1) 2 + i · 1
2 −1 1− 1 · (−1) 2− 1 · 1
3 −i 1− i · (−1) 2− i · 1

Or more nicely:
k ωk

4 p0 p1
0 1 0 3
1 i 1− i 2 + i
2 −1 2 1
3 −i 1 + i 2− i

The last step involves 4 new roots of unity of the form ±1±i√
2

, which makes calculation a bit more

difficult.
Example calculation: p(ω5

8) = p(−1−i√
2

) = p0(ω
5 mod 4
4 ) + ω5

8p1(ω
5 mod 4
4 ) = p0(i) + −1−i√

2
p1(i) = 1− i +

−1−i√
2

(2 + i) = 1− i + 1√
2
(
√

2 +
√

2i− 2− i− 2i + 1) = 1√
2
(−1 +

√
2 + (−3−

√
2)i)

2



k ωk
8 p(computation) p(result)

0 1 0 + 1 · 3 3

1 1+i√
2

1− i + 1+i√
2

(2 + i) 1√
2
(1 +

√
2 + (3−

√
2)i)

2 i 2 + i · 1 2 + i

3 −1+i√
2

1 + i + −1+i√
2

(2− i) 1√
2
(−1 +

√
2 + (3 +

√
2)i)

4 −1 0− 1 · 3 −3

5 −1−i√
2

1− i + −1−i√
2

(2 + i) 1√
2
(−1 +

√
2 + (−3−

√
2)i)

6 −i 2− i · 1 2− i

7 1−i√
2

1 + i + 1−i√
2

(2− i) 1√
2
(1 +

√
2 + (−3 +

√
2)i)

Notice that each table contains about N entries. Calculating those entries can be done in constant
time as long as we are using floating point arithmetic.

Multiplying the polynomials

Now comes the easiest part. Understand that we just changed the representation of the polynomial p
from its coefficient vector a = (1, 2,−1, 1) to the representation:

DFT8(a) = (3,
1√
2

(1 +
√

2 + (3−
√

2)i), 2 + i,
1√
2

(−1 +
√

2 + (3 +
√

2)i),−3,

1√
2

(−1 +
√

2 + (−3−
√

2)i), 2− i,
1√
2

(1 +
√

2 + (−3 +
√

2)i)), (1)

which is an abbreviation of the point value representation

p ≡ {(ω0
8, 3), (ω1

8,
1√
2

(1 +
√

2 + (3−
√

2)i)),

(ω2
8, 2 + i), (ω3

8,
1√
2

(−1 +
√

2 + (3 +
√

2)i)),

(ω4
8,−3), (ω5

8,
1√
2

(−1 +
√

2 + (−3−
√

2)i)),

(ω6
8, 2− i), (ω7

8,
1√
2

(1 +
√

2 + (−3 +
√

2)i))}. (2)

(the DFTN part only says in a short way which points x0, . . . , xN−1 are used for the evaluation.)
We learned in the lecture that one can multiply polynomials quickly in this representation by just
multiplying the evaluated points with each other. So lets do that:

x p(x) p2(x) =: q

ω0
8 3 9

ω1
8

1√
2
(1 +

√
2 + (3−

√
2)i) −4 + 4

√
2 + (1 + 2

√
2)i

ω2
8 2 + i 3 + 4i

ω3
8

1√
2
(−1 +

√
2 + (3 +

√
2)i) −4− 4

√
2 + (−1 + 2

√
2)i

ω4
8 −3 9

ω5
8

1√
2
(−1 +

√
2 + (−3−

√
2)i) −4− 4

√
2 + (1− 2

√
2)i

ω6
8 2− i 3− 4i

ω7
8

1√
2
(1 +

√
2 + (−3 +

√
2)i) −4 + 4

√
2 + (−1− 2

√
2)i

and in direct point-value representation:

p2 ≡ {(ω0
8, 9), (ω1

8,−4 + 4
√

2 + (1 + 2
√

2)i),

(ω2
8, 3 + 4i), (ω3

8,−4− 4
√

2 + (−1 + 2
√

2)i),

(ω4
8, 9), (ω5

8,−4− 4
√

2 + (1− 2
√

2)i),

(ω6
8, 3− 4i), (ω7

8,−4 + 4
√

2 + (−1− 2
√

2)i)} (3)

3



Unfortunately for us the point value representation of p2 is hard to grasp nor very handy for various
tasks (other than multiplying polynomials), that’s why we want it transformed back into the vector
form.

Inverse DFT

To get the descriptive vector b of p2 =: q we have to solve a linear equation of the form W · b = y,
where yi = q(ωi

N ). We did see how W−1 looks like and we realized that there is a polynomial
r(x) := y0 + y1x + · · ·+ yN−1x

N−1, which we simply have to evaluate at the same points ω0
8, . . . ω

7
8 to

get the values b′0, b
′
1, . . . , b

′
N−1 which we can transform into the vector b.

We again use FFT to get b′ := DFTN (y), which we can easily transform into b by changing the order
a bit and by dividing all results by N .

Divide:

(9,−4 + 4
√
2 + (1 + 2

√
2)i, 3 + 4i,−4− 4

√
2 + (−1 + 2

√
2)i, 9,−4− 4

√
2 + (1− 2

√
2)i, 3− 4i,−4 + 4

√
2 + (−1− 2

√
2)i)

(9, 3 + 4i, 9, 3− 4i)

(9, 9)

(9) (9)

(3 + 4i, 3− 4i)

(3 + 4i) (3− 4i)

(−4 + 4
√
2 + (1 + 2

√
2)i,−4 − 4

√
2 + (−1 + 2

√
2)i,−4 −

4
√
2 + (1− 2

√
2)i,−4 + 4

√
2 + (−1− 2

√
2)i)

(−4+ 4
√
2+ (1+ 2

√
2)i,−4−

4
√
2 + (1− 2

√
2)i)

(−4 + 4
√
2 +

(1 + 2
√
2)i)

(−4 − 4
√
2 +

(1− 2
√
2)i)

(−4−4
√
2+(−1+2

√
2)i,−4+

4
√
2 + (−1− 2

√
2)i)

(−4 − 4
√
2 +

(−1 + 2
√
2)i)

(−4 + 4
√
2 +

(−1− 2
√
2)i)

Conquer: And again, the formula for combination is

q(ωk
n) = q0(ω

k mod n/2
n/2 ) + ωk

nq1(ω
k mod n/2
n/2 ).

E.g., r10(ω
1
2) = r10(−1) = r100(ω

1 mod 1
1 ) + ω1

2r101(ω
1 mod 1
1 ) = −4 + 4

√
2 + (1 + 2

√
2)i + (−1) · (−4−

4
√

2 + (1− 2
√

2)i) = −8 + 2i.

k ωk
2 r00 r01 r10 r11

0 1 18 6 −8 + 2i −8− 2i

1 −1 0 8i 8
√

2 + 4
√

2i −8
√

2 + 4
√

2i

Example for step 2: r1(ω
3
4) = r1(−i) = r10(ω

3 mod 2
2 ) + ω3

4r11(ω
3 mod 2
2 ) = r10(−1) + (−i)r11(−1) =

12
√

2 + 12
√

2i

k ωk
4 r0 r1 r0(result) r1(result)

0 1 18 + 1 · 6 −8 + 2i + 1 · (−8− 2i) 24 −16

1 i 0 + i · (8i) 8
√

2 + 4
√

2i + i · (−8
√

2 + 4
√

2i) −8 4
√

2− 4
√

2i
2 −1 18 + (−1) · (8) −8 + 2i + (−1) · (−8− 2i) 12 4i

3 −i 0 + (−i) · (8i) 8
√

2 + 4
√

2i + (−i) · (−8
√

2 + 4
√

2i) 8 12
√

2 + 12
√

2i

4



And the last step:
k ωk

8 r r(result)

0 1 24 + 1 · (−16) 8

1 1+i√
2

−8 + 1+i√
2

(4− 4i)
√

2 0

2 i 12 + i · 4i 8

3 −1+i√
2

8 + −1+i√
2

(12 + 12i)
√

2 −16

4 −1 24 + (−1) · (−16) 40

5 −1−i√
2
−8 + −1−i√

2
(4− 4i)

√
2 −16

6 −i 12 + (−i) · (4i) 16

7 1−i√
2

8 + 1−i√
2

(12 + 12i)
√

2 32

Thus, b′ = DFT8(y) = (8, 0, 8,−16, 40,−16, 16, 32). To get b we have to divide all results by N =
8 and reverse the order of all elements, except the first one: b = 1

N (b′0, b
′
N−1, b

′
N−2, . . . , b

′
2, b
′
1) =

(1, 4, 2,−2, 5,−2, 1, 0).
The final result is:

q(x) = p2(x) = x6 − 2x5 + 5x4 − 2x3 + 2x2 + 4x + 1

Exercise 2: Polynomial to the power of k (3 points)

Given a polynomial p(x) of degree n and an integer k ≥ 2, the goal of this problem is to compute the
kth power pk(x) of p(x) in an efficient way. For simplicity, we assume that k is a power of 2, that is,
k = 2` for some integer ` ≥ 1.

• Describe an efficient algorithm to compute pk(x) polynomial using the Fast Polynomial Multi-
plication algorithm from the lecture.

• What is the asymptotic runtime of your algorithm in terms of k and n? Explain your answer.

Solution 2

We compute the kth power of the polynomial p(x) by iterative multiplication, as

p(x)k = (. . . ((p(x)2)2 . . .)2

where square is taken log k times (assuming k is a power of 2).
We know that using the FFT algorithm from the lecture, two polynomials of degree n can be multiplied
in O(n log n) time. Notice that on every iterative step i of the algorithm, we need to multiply two
polynomials of degree (2i−1 ·n) and get a polynomial of degree (2i ·n). Now to compute p(x)k (where
k = 2` for some `), there will be log k such iterations.
Therefore, the asymptotic running time of the algorithm (i.e., iterative multiplication of two same
degree polynomials) would be:

log k−1∑
i=0

c · 2i · n · log(2i · n) [where c is some constant in O(n log n) bound]

Let us compute this sum:

log k−1∑
i=0

c · 2i · n · log(2i · n) = cn ·
log k−1∑
i=0

2i · (i + log(n))

= cn ·
log k−1∑
i=0

i · 2i + cn · log(n) ·
log k−1∑
i=0

2i

≤ cn ·
(

(log(k)− 1) · 2log(k)
)

+ cn · log(n) ·
(

2log(k) − 1
)

≤ cnk · log(nk)

Hence, the asymptotic running time of the algorithm is O(nk · log(nk)).

5


