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Topics Covered 

 Turing machines 

 Variants of Turing machines 

 Multi-tape 

 Non-deterministic 

 Definition of algorithm 

 The Church-Turing Thesis 

 



Finite State Automata 

 Can be simplified as follow 

 

 

 

 

 

 State control for states and transitions 

 Tape to store the input string 
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Pushdown Automata 

 Introduce a stack component 

 

 

 

 

 

 

 Symbols can be read and written there 
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Turing Machine (TM) 

 Introduce an infinite tape 

 

 

 

 
 

 Symbols can be read and written there 

 Move left and right on the tape 

 Machine accepts, rejects, or loops 

state 
control 
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input 



Turing Machine (TM)   

 Let’s design one for the language 
𝐹 = 𝑤#𝑤  𝑤 ∈ 0,1 ∗} 

 How will it work? 

 

 Remember: 

 It has the string on the tape 

 It can go left and right 

 It can write symbols on the tape 



Turing Machine (TM)   

𝐹 = 𝑤#𝑤  𝑤 ∈ 0,1 ∗} 

The machine does this: 

 Scan to check there is only one # 

 Zig-zag across # and read symbols 

 If do not match reject 

 If they match write the symbol x  

 If all symbols left to # matche, accept 



Turing Machine (TM)   

𝐹 = 𝑤#𝑤  𝑤 ∈ 0,1 ∗} 
𝑤1 ∈ 𝐹 = "011000#011000" 

X 1 1 0 0 0 # X 1 1 0 0 0 ⊔ … 

X X 1 0 0 0 # X 1 1 0 0 0 ⊔ … 

⋮ 

X X X X X X # X X X X X X ⊔ … 

X 1 1 0 0 0 # X 1 1 0 0 0 ⊔ … 

X 1 1 0 0 0 # 0 1 1 0 0 0 ⊔ … 

0 1 1 0 0 0 # 0 1 1 0 0 0 ⊔ … 



Formal Definition of a TM 

A Turing machine is a 7-tuple  
  (𝑄, Σ, Γ, 𝛿, 𝑞𝑜, 𝑞𝑎𝑐𝑐𝑒𝑝𝑡, 𝑞𝑟𝑒𝑗𝑒𝑐𝑡) 

 𝑄 is the set of states 

 Σ is the input alphabet, without ⊔ 

 Γ is the tape alphabet and ⊔∈ Γ, Σ ⊆ Γ 

 𝛿: 𝑄 × Γ → 𝑄 × Γ × {𝐿, 𝑅} is the transition 
function 

 𝑞0 ∈ 𝑄 is the initial state 

 𝑞𝑎𝑐𝑐𝑒𝑝𝑡 , 𝑞𝑟𝑒𝑗𝑒𝑐𝑡 ∈ 𝑄 are the final states 

 

 



TM Configurations 

 Describe the state of the machine 

 Written as 𝐶 = 𝑢𝑞𝑖𝑣 where: 

 𝑞𝑖 is the current state of the machine 

 𝑢𝑣 is the content of the tape 

 The head stays at the first symbol of 𝑣 



TM Transitions  

 A configuration 𝐶1 yields 𝐶2 if the 

machine can go from 𝐶1 to 𝐶2 in 1 step 

 𝑢𝑎𝑞𝑖𝑏𝑣 yields 𝑢𝑞𝑗𝑎𝑐𝑣 if 𝛿 𝑞𝑖 , 𝑏 = 𝑞𝑗 , 𝑐, 𝐿  
 

 𝑢𝑎𝑞𝑖𝑏𝑣 yields 𝑢𝑎𝑐𝑞𝑗𝑣 if 𝛿 𝑞𝑖 , 𝑏 = 𝑞𝑗 , 𝑐, 𝑅  
 

 Note: cannot go over the left border! 

 



TM Acceptance 

 The machine starts at 𝑞0𝑤 

 The machine accepts at 𝑞𝑎𝑐𝑐𝑒𝑝𝑡 

 The machine rejects at 𝑞𝑟𝑒𝑗𝑒𝑐𝑡 

 

 An input is accepted if there is 𝐶1, … , 𝐶𝑘 

 The machine starts at 𝐶1 

 Each 𝐶𝑖 yields 𝐶𝑖+1 

 𝐶𝑘 is an accepting state 

 



Computations and Deciders 

 Three possible outcomes: 

 It ends in an accept state 

 It ends in a reject state 

 It does not end (loops forever) 

 

 Accept and reject are halting states 

 Loops are not halting 

 A Decider halts on every input 

 



TMs and Languages 

 The strings a TM 𝑀 accepts define the 
language of 𝑀 , L(𝑀)  

 

 A language is Turing recognizable 
(recursively enumerable) if some TM 
recognizes it 

 

 A language is Turing decidable 
(recursive) if some TM decides it 

 



TM Example 

TM 𝑀2 recognizes the language 
consisting of all strings of zeros with 
their length being a power of 2. In other 
words, it decides the language 

𝐴 = 02
𝑛
  𝑛 ≥ 0}. 



TM Example 

𝐴 = 02
𝑛
  𝑛 ≥ 0} 

 

1.Sweep left to right accross the tape, 
crossing off every other 0 

2.If the tape has a single 0, accept 

3.If the tape has more than one 0 and 
the number of 0s is odd, reject 

4.Return the head to the left 

5.Go to stage 1 

 

 



TM Example 
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0→□,R 0 → x,R 

□ →R 
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□ → R 

□ → R 

x → R 

x →  R 
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0 → L 
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0 → x,R 

0 → R 



Another TM Example 

𝐹 = 𝑤#𝑤  𝑤 ∈ 0,1 ∗} 

 

1.Check for #, if not reject 

2.Zig-zag across and cross off same 
symbols. If not same, reject  

3.If all left of # are crossed, check for 
non crossed symbols on the right side 

4.If none, accept, otherwise reject 

 

 



Another TM Example 

 

 

 



Variants of Turing Machines 

 Mostly equivalent to the original 

 

 Example: consider movements as 
{L,R,S}, where S means stay still 

 Equivalent to original, represent S as 
two transitions: first R, then L or vice 
versa 



Multi-Tape Turing Machine 

 Include multiple tapes and heads 

 

 

 

 

 
 

 Input on first tape, the others blank 

 Transitions 𝛿: 𝑄 × Γ𝑘 → 𝑄 × Γ𝑘 × 𝐿, 𝑅, 𝑆 𝑘 

 

M 
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b a b 

a b 



Equivalence Result 

Theorem 3.13: 

Every multitape Turing machine has an 
equivalent single-tape Turing machine. 

 



Equivalence Result 

Theorem 3.13: 

Every multitape Turing machine has an 
equivalent single-tape Turing machine. 

 

M 

0 0 1 1 

b a b 

a b 



Equivalence Result 

Theorem 3.13: 

Every multitape Turing machine has an 
equivalent single-tape Turing machine. 

 

M 

0 0 1 1 

b a b 

a b 

S 0 0 1 1 # b a b a b # # 



Proof of Theorem 3.13 

 Consider a input 𝑤1𝑤2…𝑤𝑘 

 Add dotted symbols for the head 

 Put all the input on the single tape  
#𝑤1 𝑤2…𝑤𝑘# ⊔ # ⊔ #…# 

 Simulate a single move 

 Scan from first # to last to get the heads 

 Re-run to update the tape 

 If head symbols go to the right # write 
a blank and shift the tape content 

 



Equivalence Result 

Corollary 3.15: 

A language is Turing-recognizable if and 
only if some multi-tape Turing machine 
recognizes it 

 

Proof: 

Forward: an ordinary machine is a 
special case of a multi-tape 

Backward: see Theorem 3.13 



Intermezzo: Programming 

“Brainfuck”: language simulating a TM 

Character Meaning 

> increment the data pointer (to point to the next cell to the right). R 

< decrement the data pointer (to point to the next cell to the left). L 

+ increment (increase by one) the byte at the data pointer. 

- decrement (decrease by one) the byte at the data pointer. 

. 
output a character, the ASCII value of which being the byte at the data 
pointer. 

, accept one byte of input, storing its value in the byte at the data pointer. 

[ 
if the byte at the data pointer is zero, then instead of moving the 
instruction pointer forward to the next command, jump it forward to the 
command after the matching ] command. 

] 
if the byte at the data pointer is nonzero, then instead of moving the 
instruction pointer forward to the next command, jump it back to the 
command after the matching [ command*. 

(http://en.wikipedia.org/wiki/Brainfuck) 

http://en.wikipedia.org/wiki/Program_Counter
http://en.wikipedia.org/wiki/Branch_(computer_science)


Non Deterministic TMs (NTMs) 

 Transition function changed into 

 𝛿: 𝑄 × Γ → 𝑃 𝑄 × Γ × 𝐿, 𝑅  

 𝛿 𝑞, 𝑎 = 𝑞1, 𝑏1, 𝐿 , … , 𝑞𝑘 , 𝑏𝑘 , 𝑅  

 

 Same idea as for NFAs 
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Equivalence of NTMs and TMs 

Theorem 3.16: 

Every nondeterministic Turing machine 
has an equivalent deterministic Turing 
machine. 

 

Idea: 

 Three tapes: input, simulation, index 

 Simulator to perform computation 

 Index to trace the path in the tree 

 



Equivalence of NTMs and TMs 

Theorem 3.16: 

Every nondeterministic Turing machine 
has an equivalent deterministic Turing 
machine. 

 

Idea: 

 Three tapes: input, simulation, index 

 Simulator to perform computation 

 Index to trace the path in the tree 

 



Proof of Theorem 3.16 

1. Copy the input from tape 1 to 2 

2. Use tape 2 to simulate N on one 
branch of computation 

a. Consult tape 3 to get the transition 

b. Abort if empty symbol, invalid or reject 

c. Accept if accept state 

3. Replace the string on 3 with the 
lexicographically next one 

4. Repeat from 1. 



NTMs and Languages 

Corollary 3.18: 

A language is Turing-recognizable if and 
only if some nondeterministic Turing 
machine recognizes it. 

 

Corollary 3.19: 

A language is decidable if and only if 
some nondeterministic Turing machine 
decides it. 

 



Enumerators 

 Recursively enumerable languages 

 Recognized by TMs 

 Alternative model: Enumerator 

 

state 
control 
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Enumerators 

 Enumerate the strings  

 Start with empty tape 

 Output tape (printer) 

 Print strings instead of accepting them 

 

 Printing in any order 

 Strings might be duplicated 

 

 



Equivalence Result 

Theorem 3.21: 

A language is Turing-recognizable if and 
only if some enumerators enumerate it. 

 

Proof: 

Forward: e have an enumerator E.  

We can build a machine T that 

1. Run E and compare every string  

2. If it appears, accept 



Equivalence Result 

Backward: We have a machine T.  

We can build an enumerator E as this: 

 

1. Ignore the input 

2. For each i = 1,2,… 

1. Run T for i steps on each input in Σ∗ 

2. If any computation accepts, print it. 

 

E eventually prints all string T accepts 

 



Other Variants of TMs 

 Many other variants of TMs exist 

 All equivalent  in power under 
reasonable assumptions  

 Turing complete languages 

 The class of algorithms described 
identical for all these languages. 

 For a given task, one type of language 
may be more elegant or simple. 

 



Definition of Algorithm 

 Precise definition only in 20th century 

 

 Informal idea was already present 

 

 Collection of instructions for a task 

 

 Formal definition needed to be found 



Anecdote: David Hilbert 

 Famous mathematician  

 Int. congress of Maths in 1900 

 Formulated 23 math problems 

 

 The 10th problem said: 

 Devise an algorithm to test whether a 
polynomial has an integral root 

 Algorithm = “a process according to 
which it can be determined by a finite 
number of operations” 

 



Anecdote: David Hilbert 

 Mathematicians believed it existed 

 We know it is not possible 

 A formal definition of algorithm was 
needed to prove it 

 Alonso Church : 𝜆-calculus 

 Alan Turing: Turing machines 

 Church—Turing Thesis:  

 Intuitive algorithm = TM algorithm 

 



Formal Definition of Algorithm 

 Let’s rephrase Hilbert problem 

 Consider the set 

𝐷 = 𝑝  𝑝 is a polynomial with integer root} 

 Hilbert problem asks if D is decidable 

 Unfortunately it is not 

 Fortunately is Turing recognizable 



Formal Definition of Algorithm 

 Consider a simpler problem 

𝐷1 = 𝑝  𝑝 is a poly. over 𝑥 with integer root} 

 Build a TM that recognizes it 

1. Input is a polynomial over x 

2. Evaluate p with x=0,1,-1,2,-2,… 

3. If polynomial evaluates to 0, accept 



Formal Definition of Algorithm 

 Describe an algorithm equals to 
describe a Turing machine 

 Three possibilities: 

 Formal description (low level) 

 Implementation description (mid level) 

 English description (high level) 

 

 We will describe machines in high level 



Turing Machine Description 

 Input is always a string 

 Objects represented as strings 

 Encoding is irrelevant (equivalence) 

 TM Algorithm will be high level 

 First line describe the input 

 Indentations describe blocks 



Example description 

𝐴 = {⟨𝐺⟩|  𝐺 is a connected undirected graph} 

Remember the definition of connected? 

 



Example description 

𝐴 = {⟨𝐺⟩|  𝐺 is a connected undirected graph} 

Remember the definition of connected? 

Every node is reachable from every one 

 4 
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G = 



Example description 

 

 

 

 

 

 

M = „On input <G>, the encoding of a graph G: 

1. Select the first node of G and mark it. 

2. Repeat the following stage until no new nodes are marked. 

1. For each node in G, mark it if it is attached by an edge to 
a node that is already marked. 

3. Scan all the nodes of G to determine whether they all are 
marked. 
If yes, accept; otherwise reject.“ 

 

4 

1 

2 3 

G = <G> = (1,2,3,4) ((1,2),(2,3),(3,1),(1,4)) 



Summary 

 Turing machines  

 Variants of Turing machines 

 Multi-tape 

 Non-deterministic 

 The definition of algorithm 

 The Church-Turing Thesis 


