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Graphs
Node set V, typically n := [V| (nodes are also called vertices)

Edge set E, typically m := |E|
* undirected graph: E C {{u, v}:u,vE V}
e directed graph: ECV XV

Examples:
,2,3,4, 5}

V={12345)}
E ={{1,2},{1,4},{1,5},{2,3},{3,4},{3,5}, {4,5}}
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Node Degrees

Graph G = (V, E) undirected:

* Degree of node u € V: Number of edges (neighbors) of u
deg(u) == [{u, v} : {u,v} € E|

Graph G = (V,E) directed:

* In-degree of node u € VV: Number of incoming edges
deg;,(u) = |(v,u) : (v,u) € E|

* Qut-degree of node u € V: Number of outgoing edges
degoye(w) == [(w,v) : (u,v) € E|
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Paths

Paths inagraph ¢ = (V,E)

* Pathin G :asequence Uy, Uy, ..., Uy € V withu; # u; (if i # j)
— directed graph: (u;,u;41) € E foralli € {1, ...,k — 1}
— undirected graph: {u;, u;,1} € E foralli € {1, ...,k — 1}

Path, directed: \ @ @ @ @

Length of path: 6

A

[ |

Length of a path
* Number of edges on the path
* With edge weights: sum of all edge weights
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Pfade

Paths inagraph ¢ = (V,E)

* Pathin G :asequence Uy, Uy, ..., Uy € V withu; # u; (if i # j)
— directed graph: (u;,u;41) € E foralli € {1, ...,k — 1}
— undirected graph: {u;, u;,1} € E foralli € {1, ...,k — 1}

Length of a path
 Number of edges on the path
* With edge weights: sum of all edge weights

Shortest path between nodes u and v
 Pathu, ..., v of smallest length

 Distance d;(u, v): Length of a shortest path between u and v
Diameter D := maxd (u,v)

u,vel
* Length of the longest shortest path
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Representation of Graphs

Two classic methods to represent a graph in a computer

 Adjacency matrix: Space usage O(|V]?) = O(n?)

* Adjacency lists: Space usage O(|V| + |E]) = ©(n + m) = 0(n?)

Example:

adjacency matrix

1 2 3 4 5
1(0{1|10(1]|0
21101110
310(12]0]0(1
411110101
51010110
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Adjacency Matrix

Details:

* With edge weights, matrix entries are weightes (instead of 0/1)
(implicitly: weight 0 = edge does not exist)

* Directed graphs: one entry per directed edge
— Edgefromitoj:entryinrowiand columnj

* Undirected graphs: two entries per edge

— Matrix in this case is symmetric

Properties Adjacency Matrix:
* Memory-efficient if |[E| = m € O(|V|?) = 8(n?)
— In particular for unweighted graphs: only one bit per matrix entry
* Not memory-efficient for sparse graphs (m € o(n?))
* For certain algorithms, the “right” data structure

* “Edge between u and v” can be answered in time 0(1)

Fabian Kuhn Algorithms and Data Structures



Adjacency Lists

Structure
* An array with all the nodes
e Entries in this node array:

— Linked lists with all edges of the corresponding nodes

Properties
 Memory-efficient for sparse graphs

 Memory-usage always (almost) asymptotically optimal
— but for dense graphs, still much worse...
— To be precise: one actually requires O(logn) bits per node

* Queries for specific edges not very efficient
— If necessary, one can use an additional data structure (e.g., a hash table)

* For many algorithms, the “right” data structure
 E.g., for depth first search and breadth first search
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Examples

Examples from [CLRS]:
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Graph Traversal

Graph Traversal (also: graph exploration) informally

Given: agraph G = (V,E) and anode s € V, visit all nodes that
are reachable from s in a “systematic” way.

We have already seen this for binary trees.
As for trees, there are two basic approaches

Breadth First Search (BFS)

— first “to the breadth” (nodes closer to s first)

Depth First Search (DFS)

— first “to the depth” (visit everything that can be reached from some
neighbor of the current node, before going to the next neighbor)

Graph traversal is important as it is often used as a subroutine in
other algorithms.

— E.g., to compute the connected components of a graph

— We will see a few examples...
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Traversal of a Binary Search Tree

Goal: visit all nodes of a binary search tree once
In-Order (DFS): 8

Pre-Order (DFS): Bl

%)

NN

; “&m

8,,

&

114

T

Fabian Kuhn Algorithms and Data Structures

v

11



BFS Traversal

e Solution with a FIFO queue:
— If a node is visited, its children are inserted into the queue.

BFS-Traversal:
Q = new Queue()
Q.enqueue(root)
while not Q.empty() do
node = Q.dequeue()

visit(node)
if node.left != null
Q.enqueue(node.left)

if node.right != null
Q.enqueue(node.right)
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BFS Traversal of General Graphs

Differences binary tree T < general graph G
* Graph G can contain cycles

* InT, we have a root and every node know the direction towards
the root.
— Such trees are very often also called “rooted trees”

BFS Traversal in graph G (start at node s € V)
* Cycles: mark nodes that we have already seen
* Mark node s, then insert s into the queue

* As before, take first node u from the queue:
— visit node u

— Go through the neighbors v of u
If v is not marked, mark v and insert v into the queue
If v is marked, there is nothing to be done
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BFS Traversal of General Graphs

* At the beginning v. marked is set to false for all nodes v

BFS-Traversal(s):
for all u in V: u.marked = false;
Q = new Queue()
s.marked = true
Q.enqueue(s)
while not Q.empty() do
u = Q.dequeue()
visit(u)
for v in u.neighbors do
if not v.marked then
v.marked = true;
Q.enqueue(Vv)
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BFS Traversal Exmaple

FIFO Queue:

— ©

@

@

S,

@
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Analysis BFS Traversal

In the following, we label nodes as follows
* white nodes: Knoten, welche der Alg. noch nicht gesehen hat

e gray (before: blue) nodes: marked nodes

— Nodes become gray when they are inserted into the queue.
— Nodes are gray, as long as they are in the queue.

e black (before: red) nodes: visited nodes
— Nodes become black when they are removed from the queue.
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Analysis BFS Traversal

The running time of a BFS traversal is O(n + m).
— Assumption: graph given as adjacency lists
* If the graph is given by an adjacency matrix, the running time is ®(n?).
— white nodes: nodes that the algorithm has not seen yet
— gray (before: blue) nodes: marked nodes
— black (before: red) nodes: visited nodes

* Every node is inserted at most once into the queue.

— In total, there are therefore O(n) queue operations.

* If node v gets removed from the queue, the algorithm looks at all
its nighbors.

— Every directed edge is considered once.

— Adjacency lists: time cost per node = O (#neighbors)
* One has to go through the neighbor list once.

— Adjacency matrix: time cost per node = 0(n)
* One has to go through a whole row of the matrix.
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Trees, Spanning Trees

Tree:

A connected, undirected graph without cycles

— potentially also a directed graph, but then the graph must not have cycles,
even when ignoring the directions.

Spanning Tree of a Graph G:

 Asubgraph T such that T is a tree containing all nodes of G

— Subgraph: Subset of the nodes and edges of G such that they together
define a graph.

Fabian Kuhn Algorithms and Data Structures 18



B FS Tree If G is directed: all nodes are reachable from s

e

In a BFS traversal, we-can construct a spanning tree as follows
(if G is connected):
* Every node u stores, from which node v it was marked

* Node v then becomes the parent node of u

— Because every node is marked exactly once, the parent of each node is
defined in a unique way, s is the root and has no parent.
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BFS Tree: Pseudocode

 We additionaly store the distance from s in the tree.

BFS-Tree(s):

Q = new Queue();
for all u in V: u.marked = false;
s.marked = true;
s.parent = NULL;
s.d =0
Q.enqueue(s)
while not Q.empty() do
u = Q.dequeue()
visit(u)
for v in u.neighbors do
if not v.marked then
v.marked = true;

v.parent = u;

v.d = u.d + 1;
Q.enqueue(Vv)

Fabian Kuhn Algorithms and Data Structures 20



Analysis BFS Traversal

In the BFS tree of an unweighted graph, the distance from the root’s
to each node u is equal to d; (s, u).

* Tree distance from the root: d(s,u) = u.d
* We therefore need to show that u.d = d;(s,u)
* |t definitely holds that u.d > dg(s, u)

— Because u.d = dr(s,u), this is equivalent to d;(s,u) = d; (s, u)

— This of course holde because every path in T is also a path in G, the distance
in T can therefore not be smaller than the distance in G.
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Analysis BFS Traversal

Lemma: Assume that during BFS traversal, the state of the queue is
Q = (vq,Vq, ..., ) (v;:head, v,: tail)

Then, v,..d < vy.d+1andv;.d < vj q.d(fori=1,..,r—1)

Proof: By induction on the queue operations

e Base: At the beginning, only s with s.d = 0 is in the queue.

induction hypothesis

* Step:
— dequeue operation: Q = (v, Vy, ..., V) , Vpod <vV1.d+1<v,.d+1

— enqueue operation: u,{v{, Uy, .., V),V @—)@
A\

most recently new node in the When v is inserted into the
deleted node queue queue, the last removed node

u is getting processed

— From the induction hypothesis: _ )
(v is a neighbor of u).

v.d<vy.d+1: vd=ud+1<v,.d+1

= v.d=ud+1

v,..d <v.d: ve.d <u.d+1=v.d
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Analysis BFS Traversal

In the BFS tree of an unweighted graph, the distance from the root’s
to each node u is equal to d; (s, u).

* Proof by contradiction:

— Assumption: v is node with smallest d; (s, v) for whichv.d > d;(s,v)

v.d>d;(s,v) =dg(s,u)+1=ud+1

Consider dequeue of u:
* v will be considered as neighbor of u

e viswhite=v.d=u.d+1

e visblack=v.d <u.d
u.d =dg(s,u) .

v is gray = v is in the queue
Lemma: v.d < u.d+1
de(s,v) =dgs(s,u) +1
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Depth-First Search in General Graphs
Basic idea DFS traversal in G (start at node s € V)

 Mark node v (at the beginning v = s)
* Visit the neighbors of v one after the other recursively
* After all neighbors are visited, visit v

* Recursively: While visiting the neighbors, visit their neighbors and
while doing this their neighbors, etc.

* Cycles in G: Only visit nodes that have not been marked

* Corresponds to the post-order traversal in trees.

* The order in which the nodes are marked corresponds to the
pre-order traversal in trees.
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DFS Traversal: Pseusocode

DFS-Traversal(s):
for all u in V: u.color = white;
DFS-visit(s, NULL)

DFS-visit(u, p):
u.color = gray;
u.parent = p;
for all v in u.neighbors do
if v.color = white
DFS-visit(v, u)
visit node u;
u.color = black;
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DFS Traversal: Example

Fabian Kuhn Algorithms and Data Structures
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DES Traversal: Analysis

In the same way as for a BFS traversal, one can also construct a
spanning tree when doing a DFS traversal.

The running time of a DFS traversal is O(n + m).

* We color the nodes white, gray, and black as before
— not marked = white, marked = gray, visited = schwarz

* The recursive DFS traversal function is called at most once for
every node.

 The time to process a node v is proportional to the number of
(outgoing) edges of v
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Connected Components

 The connected components (or simply components) of a graph are
its connected parts.

Goal: Find all components of a graph.

5

for u in V do
if not u.marked then
start new component
explore with DFS/BFS starting at u

 The connected components of a graph can be identified in time
O(n + m). (by using a DFS or a BFS traversal)
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DFS “Parenthesis” Theorem

We define the following two times for each node v
* t,4:time, when vis colored gray in the DFS traversal
* t,,:time, when v is colored black in the DFS traversal

Theorem: In the DFS tree, a node v is in the subtree of a node u, if
and only if the interval [tm, tv,z] is completely contained in the
interval [tu’l, tu,z]-

Example:

la1tr1te1tagrteate2tp thataz e Uf2 La2

e Y B B O O

| |
s (2
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DFS “Parenthesis” Theorem

Theorem: In the DFS tree, a node v is in the subtree of a node u, if
and only if the interval [tm, tv,z] is completely contained in the
interval [tu,lr tu,z].

Why is this useful?

* Improves our understanding of the structure of the
resulting DFS tree

* We need the theorem, e.g., to prove the correctness of the
algorithm for computing a topological sort.
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DFS “Parenthesis” Theorem

Theorem: In the DFS tree, a node v is in the subtree of a node u, if
and only if the interval [tm, tv,z] is completely contained in the
interval [tu,lr tu,z].

Proof:

* Gray nodes always form a path that starts at node s.
— Path starts at s, currently active node at the end of the path
— New node w becomes gray = w neighbor of active node
— Node becomes black = active node ends recursion

b—(c—d—-- --—w—w
&—b——@ W

* Node visin the subtree of u u if and only if u is part of the path,
when v becomes gray and thus iff t;, ; < t,; < ty,.

* NOde v in this case is further to the end in the path than u and has
to become black before node u, hence t,,, <t ,
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DFS “Parenthesis” Theorem

Theorem: In the DFS tree, a node v is in the subtree of a node u, if
and only if the interval [tm, tv,z] is completely contained in the
interval [tu,lr tu,z].

Implications

 Two intervals are always either disjoint or one of the intervals is
contained in the other.

 Why “Parenthesis” Theorem?
If for each t,, ; we write an open parenthesis and for each t;, , we
write a close parenthesis, one gets an expression in which the
parentheses are nested properly.

A white node v, which is discovered in the recursive traversal
started at u becomes black before the recursion gets back to u.
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White Paths

Theorem: In a DFS tree, a node v is in the subtree of a node u, if and
only if immediately before marking node u, a completely white path
from u to v exists.

attime ty; 4

Proof:

* Proof by contradiction: Assume that there is a node v to which
there is a white path, but that node v is not in the subtree of u.

 Assume that v is such a node with the additional property that
immediately before marking u, v has the shortest white path from
u among all such nodes.

O—O—w— ~—O—w—
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Classification of Edges (in DFS)

Tree Edges:

* (u,v)is atree edge, if node
v is discovered from node u

— When considering (u, v), v is white

Backward Edges:

 (u,v)is abackward edge if
v is a predecessor node of u

— When considering (u, v), v is gray

Forward Edges:

 (u,v)is aforward edges if
v is a successor node of u

— When considering (u, v), v is black

Cross Edges:

* All other edges

— When considering (u, v), v is black
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Classification of Edges (in DFS)

Tree Edge (u, v): (w—(v)

 Node v is “discovered” as white neighbor of u
— If when considering (u, v), v is white = (u, v) tree edge

Backward Edge (u,v): (w—®)

* Subtree of u will be completely visited,

before v becomes black

— If when considering (u, v) v is gray = (u, v) backward edge

Forward Edge (u, v): (w—€)

tu,l < tv,l < tv,Z < tu,Z

* visinasubtree of u that has already been visited completely

— Since visin a subtree of u, visschwarzand t,,; > t, 4

Cross Edge (u, v): (wW—Q)

tv,l < tv,Z < tu,l < tu,Z

* Aslongas u is gray, all newly visited nodes are in the subtree of u,

v was therefore visited before u: vis blackand t,,; < ¢, ;.
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DEFS — Undirected Graphs

* In undirected graphs, every edge {u, v} is considered twice
(once from u and once from v)

* We classify the edge according to the first consideration.

Theorem: In a DFS traversal in an undirected graph, every edge is
either a tree edge or a backward edge.

Proof:

 W.l.o.g., we assume that u becomes gray before v becomes gray.

* From the theorem about white paths, we know that v is visited as
long as u is still gray (v is in the subtree of u).

* |If the edge {u, v} is first considered from u, node v is still white
= {u, v}is a tree edge.

* If the edge {u, v} is first considered from v, node u is still gray
= {u, v} is a backward edge.
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DES — Directed Graphs

Theorem: A directed graph has no cycles if and only if during a DFS

traversal, there are no backward edges.

backward edge — cycle:

backward edge
o — u must be in the
subtree of v.

u can also be a
child of v.

i
cycle = backward edge: assumption: v is
the first considered
backward edge node in the cycle .
—
white path:
uis in the

subtree of v.
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In directed graphs,
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O(n + m) if the
graph is acyclic.




Application: Topological Sort

Directed Acyclic Graphs:

 DAG: directed acyclic graph

* E.g., models time dependencies between tasks
 Example: putting on pieces of clothes

underpants
glasses

Topological sort:

e Sort the nodes of a DAG in such a way that u appears before v if a
directed path from u to v exists.

* Inthe example: Find a possible dressing order

Fabian Kuhn Algorithms and Data Structures
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Topological Sort: A bit more formally...

Directed Acyclic Graphs:
* represent partial orders

— asymmetric: a<b = =(b<a)
transitive: a<bAb<c = a<c

— partial order: not all pairs need to be comparable

 Example: subset relation for sets

y{l} {1»2}\

o —>{2} {1,3}——=1{1,2,3}
\{3}_>_(é {2,3}/
Topological Sort:

e Sort the nodes of a DAG in such a way that u appears before v if a
directed path from u to v exists.

e Extend a partial order to a total order:

®,113,12}, 135 11,2},11,3,12,3},{1,2,3}
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Topological Sort: Algorithm

Do a DFS ...

11 t21 t31 lo1 T101 t102 ls51 l52 loz l32 l71 lgq lgq U4 lgo

;72 U272 tg1 o2 T12 T111 T112 t121 T131 T141 T1a2 U132 122

Observation:
* Nodes without successor are visited first (colored black)
* Visiting order is a reverse topological sort order

Fabian Kuhn Algorithms and Data Structures
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Topological Sort: Algorithm

Theorem: The reversed “visit” order (coloring black) of the nodes
in a DFS traversal gives a topological sort of a directed acyclic graph.

Proof:

* We must show that for every edge (u, v), node v becomes black
before node u.

* Case 1: u becomes gray before v: (W—(1v) = W—€)

— Then, visin the subtree of u and therefore t,,; <t,; <{ty,.
From the parenthesis theorem, we then also get t,,, <y, ,.

* Case 2: v becomes gray before w: (w—®) = W—€)

— u can only become gray before v becomes black, if u is in the subtree of v.
Then we would have a directed path from v to u = cycle!

Fabian Kuhn Algorithms and Data Structures



DES Traversal: Further Application

Strongly Connected Components

e Strongly connected component of a directed graph:
“Maximal subset of nodes s. t. every node can reach every other
node”

.'-
| | .-‘-_‘

Picture: Wikipedia

* Requires 2 DFS traversals (time = O(m + n))
— on G and on GT (all edges reversed)
— G and GT have the same strongly connected components

* Details, e.g., in [CLRS]
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