
Algorithm Theory

Chapter 1

Divide and Conquer

Part V:
Fast Polynomial Multiplication 2

Fabian Kuhn



Algorithm Theory Fabian Kuhn 2

Faster Polynomial Multiplication?

Idea to compute 𝑝 𝑥 ⋅ 𝑞(𝑥) (for polynomials of degree < 𝑛):

𝑝, 𝑞 of degree 𝑛 − 1, 𝑛 coefficients

2 × 2𝑛 point-value pairs 𝜔2𝑛
𝑘 , 𝑝 𝜔2𝑛

𝑘 and 𝜔2𝑛
𝑘 , 𝑞 𝜔2𝑛

𝑘

2𝑛 point-value pairs 𝜔2𝑛
𝑘 , 𝑝 𝜔2𝑛

𝑘 𝑞 𝜔2𝑛
𝑘

𝑝 𝑥 𝑞(𝑥) of degree 2𝑛 − 2, 2𝑛 − 1 coefficients

Evaluation at 𝜔2𝑛
0 , 𝜔2𝑛

1 , … , 𝜔2𝑛
2𝑛−1 using FFT in time 𝑶(𝒏 𝐥𝐨𝐠𝒏)

Point-wise multiplication in time 𝑶(𝒏)

Interpolation



Algorithm Theory Fabian Kuhn 3

Interpolation

Convert point-value representation into coefficient representation

Input: 𝑥0, 𝑦0 , … , 𝑥𝑛−1, 𝑦𝑛−1 with 𝑥𝑖 ≠ 𝑥𝑗 for 𝑖 ≠ 𝑗

Output: 

Degree-(𝑛 − 1) polynomial with coefficients 𝑎0, … , 𝑎𝑛−1 such that

𝑝 𝑥0 = 𝑎0 + 𝑎1𝑥0 + 𝑎2𝑥0
2 +⋯+ 𝑎𝑛−1𝑥0

𝑛−1 = 𝑦0
𝑝 𝑥1 = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥1

2 +⋯+ 𝑎𝑛−1𝑥1
𝑛−1 = 𝑦1

⋮ ⋮
𝑝 𝑥𝑛−1 = 𝑎0 + 𝑎1𝑥𝑛−1 + 𝑎2𝑥𝑛−1

2 +⋯+ 𝑎𝑛−1𝑥𝑛−1
𝑛−1 = 𝑦𝑛−1

 linear system of equations for 𝑎0, … , 𝑎𝑛−1



Algorithm Theory Fabian Kuhn 4

Interpolation

Matrix Notation:

1 𝑥0 ⋯ 𝑥0
𝑛−1

1 𝑥1 ⋯ 𝑥1
𝑛−1

⋮ ⋮ ⋱ ⋮
1 𝑥𝑛−1 ⋯ 𝑥𝑛−1

𝑛−1

⋅

𝑎0
𝑎1
⋮

𝑎𝑛−1

=

𝑦0
𝑦1
⋮

𝑦𝑛−1

• System of equations solvable iff 𝑥𝑖 ≠ 𝑥𝑗 for all 𝑖 ≠ 𝑗

Special Case 𝒙𝒊 = 𝝎𝒏
𝒊 :

1 1 1 ⋯ 1
1 𝜔𝑛 𝜔𝑛

2 ⋯ 𝜔𝑛
𝑛−1

1 𝜔𝑛
2 𝜔𝑛

4 ⋯ 𝜔𝑛
2(𝑛−1)

⋮ ⋮ ⋮ ⋱ ⋮

1 𝜔𝑛
𝑛−1 𝜔𝑛

2 𝑛−1
⋯ 𝜔𝑛

(𝑛−1)(𝑛−1)

⋅

𝑎0
𝑎1
𝑎2
⋮

𝑎𝑛−1

=

𝑦0
𝑦1
𝑦2
⋮

𝑦𝑛−1



Algorithm Theory Fabian Kuhn 5

Interpolation

• Linear system:
𝑊 ⋅ 𝒂 = 𝒚 ⟹ 𝒂 = 𝑊−1 ⋅ 𝒚

𝑊𝑖,𝑗 = 𝜔𝑛
𝑖𝑗
, 𝒂 =

𝑎0
⋮

𝑎𝑛−1
, 𝒚 =

𝑦0
⋮

𝑦𝑛−1

Claim:

𝑾𝒊,𝒋
−𝟏 =

𝝎𝒏
−𝒊𝒋

𝒏

Proof: Need to show that 𝑊−1𝑊 = 𝐼𝑛



Algorithm Theory Fabian Kuhn 6

DFT Matrix Inverse

𝑊−1𝑊 =

⋯

1

𝑛

𝜔𝑛
−𝑖

𝑛
⋯

𝜔𝑛
− 𝑛−1 𝑖

𝑛
⋮
⋯

⋅

⋯ 1 ⋯

⋯ 𝜔𝑛
𝑗

⋯

⋯ 𝜔𝑛
2𝑗

⋯
⋮

⋯ 𝜔𝑛
𝑛−1 𝑗

⋯

𝑊−1𝑊 𝑖,𝑗 = ෍

ℓ=1

𝑛−1
𝜔𝑛
−ℓ𝑖 ⋅ 𝜔𝑛

ℓ𝑗

𝑛
= ෍

ℓ=0

𝑛−1
𝜔𝑛
ℓ(𝑗−𝑖)

𝑛

• We need to show that

– 𝑊−1𝑊 𝑖,𝑗 = 1 for 𝑖 = 𝑗

– 𝑊−1𝑊 𝑖,𝑗 = 0 for 𝑖 ≠ 𝑗



Algorithm Theory Fabian Kuhn 7

DFT Matrix Inverse

𝑊−1𝑊 𝑖,𝑗 = ෍

ℓ=0

𝑛−1
𝜔𝑛
ℓ(𝑗−𝑖)

𝑛

Need to show 𝑊−1𝑊 𝑖,𝑗 = ቊ
1 if 𝑖 = 𝑗
0 if 𝑖 ≠ 𝑗

Case 𝒊 = 𝒋:

𝑊−1𝑊 𝑖,𝑖 = ෍

ℓ=0

𝑛−1
𝜔𝑛
ℓ(𝑖−𝑖)

𝑛
= ෍

ℓ=0

𝑛−1
𝜔𝑛
0

𝑛
= 𝑛 ⋅

1

𝑛
= 1



Algorithm Theory Fabian Kuhn 8

𝑊−1𝑊 𝑖,𝑗 = ෍

ℓ=0

𝑛−1
𝜔𝑛
ℓ(𝑗−𝑖)

𝑛

Need to show 𝑊−1𝑊 𝑖,𝑗 = ቊ
1 if 𝑖 = 𝑗
0 if 𝑖 ≠ 𝑗

Case 𝒊 ≠ 𝒋:

𝑊−1𝑊 𝑖,𝑗 = ෍

ℓ=0

𝑛−1
𝜔𝑛
ℓ(𝑗−𝑖)

𝑛
=
1

𝑛
⋅ ෍

ℓ=0

𝑛−1

𝜔𝑛
𝑗−𝑖

ℓ
=
1 − 𝜔𝑛

𝑛 𝑗−𝑖

1 − 𝜔𝑛
𝑗−𝑖

= 0

Geometric series: ෍

ℓ=0

𝑛−1

𝑞ℓ =
1 − 𝑞𝑛

1 − 𝑞

DFT Matrix Inverse

𝜔𝑛
𝑛𝑘 = 𝜔1

𝑘 = 1

≠ 1



Algorithm Theory Fabian Kuhn 9

Inverse DFT

• 𝑊−1 =

⋯
1

𝑛

𝜔𝑛
−𝑘

𝑛
⋯

𝜔𝑛
− 𝑛−1 𝑘

𝑛

⋮
⋯

• We get 𝒂 = 𝑊−1 ⋅ 𝒚 and therefore

𝑎𝑘 =
1

𝑛

𝜔𝑛
−𝑘

𝑛
⋯

𝜔𝑛
− 𝑛−1 𝑘

𝑛
⋅

𝑦0
𝑦1
⋮

𝑦𝑛−1

=
1

𝑛
⋅ ෍

𝑗=0

𝑛−1

𝜔𝑛
−𝑘𝑗

⋅ 𝑦𝑗



Algorithm Theory Fabian Kuhn 10

DFT and Inverse DFT

Inverse DFT:

𝑎𝑘 =
1

𝑛
⋅ ෍

𝑗=0

𝑛−1

𝜔𝑛
−𝑘𝑗

⋅ 𝑦𝑗

• Define polynomial 𝑞 𝑥 = 𝑦0 + 𝑦1𝑥 +⋯+ 𝑦𝑛−1𝑥
𝑛−1:

𝑎𝑘 =
1

𝑛
⋅ 𝑞(𝜔𝑛

−𝑘)

DFT:

• Polynomial 𝑝 𝑥 = 𝑎0 + 𝑎1𝑥 +⋯+ 𝑎𝑛−1𝑥
𝑛−1:

𝑦𝑘 = 𝑝(𝜔𝑛
𝑘)



Algorithm Theory Fabian Kuhn 11

DFT and Inverse DFT

𝑞 𝑥 = 𝑦0 + 𝑦1𝑥 +⋯+ 𝑦𝑛−1𝑥
𝑛−1, 𝑎𝑘 =

1

𝑛
⋅ 𝑞 𝜔𝑛

−𝑘 :

• Therefore:
𝑎0, 𝑎1, … , 𝑎𝑛−1

=
1

𝑛
⋅ 𝑞 𝜔𝑛

−0 , 𝑞 𝜔𝑛
−1 , 𝑞 𝜔𝑛

−2 , … , 𝑞 𝜔𝑛
− 𝑛−1

=
1

𝑛
⋅ 𝑞 𝜔𝑛

0 , 𝑞 𝜔𝑛
𝑛−1 , 𝑞 𝜔𝑛

𝑛−2 , … , 𝑞 𝜔𝑛
1

• Recall:

DFT𝑛 𝒚 = 𝑞 𝜔𝑛
0 , 𝑞 𝜔𝑛

1 , 𝑞 𝜔𝑛
2 , … , 𝑞 𝜔𝑛

𝑛−1

= 𝑛 ⋅ (𝑎0, 𝑎𝑛−1, 𝑎𝑛−2, … , 𝑎2, 𝑎1)



Algorithm Theory Fabian Kuhn 12

DFT and Inverse DFT

• We have DFT𝑛(𝒚) = 𝑛 ⋅ (𝑎0, 𝑎𝑛−1, 𝑎𝑛−2, … , 𝑎2, 𝑎1):

𝑎𝑖 =

1

𝑛
⋅ DFT𝑛(𝒚) 0 if 𝑖 = 0

1

𝑛
⋅ DFT𝑛(𝒚) 𝑛−𝑖 if 𝑖 ≠ 0

• DFT and inverse DFT can both be computed using the
FFT algorithm in 𝑂 𝑛 log 𝑛 time.

• 2 polynomials of degr. < 𝑛 can be multiplied in time 𝑂(𝑛 log 𝑛).



Algorithm Theory Fabian Kuhn 13

Faster Polynomial Multiplication

Idea to compute 𝑝 𝑥 ⋅ 𝑞(𝑥) (for polynomials of degree < 𝑛):

𝑝, 𝑞 of degree 𝑛 − 1, 𝑛 coefficients

2 × 2𝑛 point-value pairs 𝜔2𝑛
𝑘 , 𝑝 𝜔2𝑛

𝑘 and 𝜔2𝑛
𝑘 , 𝑞 𝜔2𝑛

𝑘

2𝑛 point-value pairs 𝜔2𝑛
𝑘 , 𝑝 𝜔2𝑛

𝑘 𝑞 𝜔2𝑛
𝑘

𝑝 𝑥 𝑞(𝑥) of degree 2𝑛 − 2, 2𝑛 − 1 coefficients

Evaluation at 𝜔2𝑛
0 , 𝜔2𝑛

1 , … , 𝜔2𝑛
2𝑛−1 using FFT in time 𝑶(𝒏 𝐥𝐨𝐠𝒏)

Point-wise multiplication in time 𝑶(𝒏)

Interpolation using FFT in time 𝑶 𝒏 𝐥𝐨𝐠𝒏


