"nr Algorithm Theory

Chapter 7
Randomized Algorithms

Part I:
Contention Resolution

Fabian Kuhn

UNI

FREIBURG

Randomization

UNI
FREIBURG

Randomized Algorithm:

e An algorithm that uses (or can use) random coin flips in order
to make decisions

We will see: randomization can be a powerful tool to
* Make algorithms faster

* Make algorithms simpler

 Make the analysis simpler

— Sometimes it’s also the opposite...

* Allow to solve problems (efficiently) that cannot be solved
(efficiently) without randomization
— True in some computational models (e.g., for distributed algorithms)
— Not clear in the standard sequential model

Algorithm Theory Fabian Kuhn 2

Contention Resolution

UNI
f

FREIBURG

A simple starter example (from distributed computing)
* Allows to introduce important concepts
e ...and to repeat some basic probability theory

Setting:

* n processes, 1 resource
(e.g., communication channel, shared database, ...)

* There are time slots 1,2,3, ...
* In each time slot, only one process can access the resource
* All processes need to regularly access the resource

* |If process i tries to access the resource in slot t:
— Successful iff no other process tries to access the resource in slot t

Algorithm Theory Fabian Kuhn 3

Algorithm

UNI
f

FREIBURG

Algorithm Ideas:
* Accessing the resource deterministically seems hard

— need to make sure that processes access the resource at different times
— or at least: often only a single process tries to access the resource

 Randomized solution:
In each time slot, each process tries with probability p.

Analysis:

* How large should p be?

* How long does it take until some process x succeeds?
* How long does it take until all processes succeed?

* What are the probabilistic guarantees?

Algorithm Theory Fabian Kuhn 4

Analysis

UNI
FREIBURG

Events:

* A, .. process x tries to access the resource in time slot ¢

— Complementary event: A, ;

P(Ay:) =p, P(Ayx)=1-p

. Sx’t: process x is successful intimeslott | X is successful if
e x tries to access

resource and
x,t x,t y,t * no other process tries

Y+X to access resource

* Success probability (for process x):

P(Sye) = P(Axe) - 1_[P(Ay,) = p.(lk_p)n—l

yEX

Choose p that
maximizes P(Sx’t)

Algorithm Theory Fabian Kuhn

Fixing p

UNI

FREIBURG

« P(S.:) =p(1—p)"1is maximized for

1 1 1\"*
p=— = P(S)=—{1--] .

\ J
I

converges to 1/, forn - oo

1\" 1 N\ 1
1——] <-<|1-- <=
n e n 2
* Success probability:

1 1
< P(S8,;) < o

* Asymptotics:

Forn = 2:

-Mr—\

Algorithm Theory Fabian Kuhn

Time Until First Success

FREIBURG

Random Variable T, : q =P(Sye) =p(1 —p)™”

T, = tif proc. x is successful in slot t for the first time

* Distribution:
P(Ty=1)=q, P(I;=2)=10-9q)q, .
P(T,=t)=1-¢)"q

* T, is geometrically distributed with parameter

1 1\" ' 1
q:P(Sx,t):; 1_E >5.

* Expected time until first success:

co

1
E[T,] :=Zt-IP(Tx —f)==<en
t=1 q

Algorithm Theory Fabian Kuhn 7

= | [UNI

Time Until First Success

UNI
FREIBURG

Failure Event ¥, ;: Process x does not succeed in time slots 1, ..., ¢

t
Tx,t — ‘ |5x,r
r=1

* The events S, ; are independent for different ¢:

P(Fo) = P((15 | = [[PGa) = (1-P(5:)) = -
r=1 r=1

VeeER: (1+a) <e”

* We know that P(Sx’r) > 1/,

t
1 t 2/ 1+«
P(Tx,t) < <1 — a) <e [en lia/1
////
1 — 1/en < p—1/en

Algorithm Theory Fabian Kuhn 8

Time Until First Success

UNI
f

FREIBURG

No success by time t: P(Tx,t) < g~ en

t = [en]: P(Fys) < e
* Generallyif t = ©(n): constant success probability

eclnn — (elnn)c — n¢

t=[c-en-Inn]: P(Fy,) < Y emn = Yne

* For success probability 1 — 1/, we need t = O(nlogn).

* We say that x succeeds with high probability in O(nlogn) time.

Nm—o

Choice of ¢ only affects

the hidden constant in the
for any constant ¢ > 0. big-O notation.

With probability = 1 — %

Algorithm Theory Fabian Kuhn 9

Time Until All Processes Succeed

Event F;: some process has not succeeded by time t

|
FRE:BURG

UNI

" P(A U B)
Fe = U Fat = P(A) + P(B) — P(A N B)
x=1 < P(A) + P(B)

Union Bound: For events &4, ..., &, A @D B

k K
P U o 2 P(E,)

X X
Probability that not all processes have succeeded by time t:

P(F,) =P (U :Fx,t> < z P(Fy.) <n-eTen,
x=1 x=1

Algorithm Theory Fabian Kuhn 10

Time Until All Processes Succeed

Claim: With high probability, all processes succeed in the first
O(nlogn) time slots.

Proof:
e P(F,) <n-et/en
e Sett=[(c+1)-en-Inn]|
(c+1)-enlnn 1 1

P(?t) <n-e en =n-e-(ctD)Inn — 4. e = F

Remarks:

* O(nlogn) time slots are necessary for all processes to
succeed even with reasonable (constant) probability

* O(nlogn) time slots are also necessary in expectation for all
processes to succeed at least once.

Algorithm Theory Fabian Kuhn 11

UNI
f

FREIBURG

