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Chapter 7
Randomized Algorithms

Part Il:
Primality Testing
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Primality Testing

Problem: Given a natural numbern = 2, is n a prime number?
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Simple primality test: If n is not prime, one of the

if n is even then prime factors pisp < [\/ﬂ

NG
T

return (n = 2)

2i 4+ 1< | <
for i :== 1to |\n/2| do Hislin=is

1

2

3

4, if 21 + 1 divides n then
5 return false
6

return true Size of the input O(logn) bits:

\/n is exponential in the size of
* Running time: 0(1/n) the input.
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A Better Algorithm?
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* How can we test primality efficiently?
— We need a little bit of basic number theory...
L, = {1, ...,p — 1}, multiplication mod p
Square Roots of Unity: In Z;,, where p is a prime, the only
solutions of the equation x? = 1 (mod p) are x = +1 (mod p)

x2 =1 (mod p) For an integer c

x? —1 =0 (mod p) m) (x+1)-(x—1)=c-p
(x+1):(x—1) =0 (modp)

p is a prime factor

Not true if p is not prime: of x + 1 orof x — 1:
p = 15, x =4 ¢@m x+1=0(modp)or
x? =16 = 1 (mod 15) x —1 =0 (modp)

 If we find an x £ +1 (mod n) such that x? = 1 (mod n), we

can conclude that n is not a prime.
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Claim: Let p > 2 be a prime number such that p — 1 = 2°d for an integer

s = 1 and some odd integer d = 1. Then for all a € Z;,,

2"d =

a® =1 (modp) or a —1 (mod p) forsome 0 < r < s.

Proof: Recall that x? = 1 (mod p) © x = —1,1 (mod p)

* Fermat’s Little Theorem:
For every prime p and all a € Z, : aP~! =1 (mod p)

. ] -1 .
* Consider xp, xy, ..., xs, where x; = a®i for § =E==25"1.4

zl

p—1 p—1 p—1 p—1
0p=p—1 51:T 52:T s=1 = Hs-1 Os = 25
=2%-d =251.d =25%.d =2-d =d

c Vi<s:x;=x/thus x; =1 (modp) = x;.; = —1,1 (mod p)
* Fermat’s Little Theorem = x; = 1 (mod p)
e Thus:Vi<s:x;=1(modp)ordi <s:x; =—1(modp)

— This directly implies the claim.
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Primality Test
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We have: If n is an odd primeandn — 1 = 2°d for anintegers > 1
and an odd integerd = 1. Thenforalla € {1, ...,n — 1},
a® =1 (modn) or a2 % =—1 (modn) forsome0 <r < s.
(*)

Idea: If we findan a € {1, ...,n — 1} such that

a? 1 (modn) and a2 % £ —1 (modn) forall0 <r <s,
we can conclude that n is not a prime.

* For every odd composite n > 2, at least 3/, of all
a € {2, ...,d — 2} satisfy the above condition —().

* How can we find such a witness a efficiently?

Idea: pick a at random
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Miller-Rabin Primality Test
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* Given a natural numbern = 2, isn a prime number?

Miller-Rabin Test:
if n is even then return (n = 2)
compute s, d such thatn — 1 = 2°d;
choose a € {2, ...,n — 2} uniformly at random;
x = a® mod n;
if x =1 orx = n — 1 then return probably prime;
forr =1tos—1do
x = x* mod n;
if x = n — 1 then return probably prime;
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return composite;
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Analysis
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Theorem:

 Ifnis prime, the Miller-Rabin test
always returns probably prime.

* If nis composite, the Miller-Rabin test returns

composite with probability at least 3/,.

{2,...,d — 2}: all possible a
TN ﬁ -
Proof: good a : 3/, of all possible a

* Ifnis prime, the test works for all values of a
* If nis composite, we need to pick a good witness a

Corollary: If the Miller-Rabin test is repeated k times, it fails to
detect a composite number n with probability at most 47%.
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Running Time
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Cost of Modular Arithmetic:
* Representation of a number x € Z,,: O(logn) bits

* Cost of adding two numbers x + y mod n: Time: O(logn)

* Cost of multiplying two numbers x - y mod n:
— Done naively, this takes time 0(log® n)

— It’s like multiplying degree O (logn) polynomials
—> use FFT to computez = x - y

Algorithm Theory

Time: O(logn - loglogn - logloglogn)
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Running Time
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Cost of exponentiation x

* Can be done using O (log d) multiplications

d

mod n:

d = 2 1082 d Zi

e Base-2 representation of d:
* Fast exponentiation:

1. y:=1;

2. fori:=|log,d]|to0do

3 y = y% mod n;

4. ifd; = 1theny :=y-x modn;

5. returny;
 Example:d =22 =10110,

£22 — (((
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Running Time
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Theorem: One iteration of the Miller-Rabin test can be implemented
with running time O(log? n - loglogn - logloglogn).

1
2
3
4.
5.
6
7
3
9

if n is even then return (n = 2)

compute s, d such thatn — 1 = 2°d; - Time O (logn)
choose a € {2, ...,n — 2} uniformly at random; _
x = a% mod n; O(logd) = 0(logn) multiplications

if x =1 orx = n — 1 then return probably prime;
forr =1tos—1do s = O(logn) iterations

e 2 :
x = x“ mod n; 1 multiplication per iteration
if x = n — 1 then return probably prime;

return composite;

0(log n) multiplications = time O(log? n - loglogn - logloglogn)

Algorithm Theory Fabian Kuhn 10



Deterministic Primality Test
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* If a conjecture called the generalized Riemann hypothesis (GRH)
is true, the Miller-Rabin test can be turned into a polynomial-
time, deterministic algorithm

- It is then sufficientto try all a € {1, ..., 2 In? n}

* It has long not been proven whether a deterministic,

polynomial-time algorithm exists -
hides factors polynomial in loglogn

* In 2002, Agrawal, Kayal, and Saxena gave an O (log!? n)-time
deterministic algorithm

— Has been improved to 0(log® n)

* In practice, the randomized Miller-Rabin test is still the fastest
algorithm
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