
Algorithm Theory

Chapter 7

Randomized Algorithms

Part II:
Primality Testing

Fabian Kuhn

Algorithm Theory Fabian Kuhn 2

Primality Testing

Simple primality test:

1. if 𝑛 is even then

2. return 𝑛 = 2

3. for 𝑖 ≔ 1 to Τ𝑛 2 do

4. if 2𝑖 + 1 divides 𝑛 then

5. return false

6. return true

• Running time: 𝑂 𝑛

Problem: Given a natural number 𝑛 ≥ 2, is 𝑛 a prime number?

If 𝑛 is not prime, one of the

prime factors 𝑝 is 𝑝 ≤ 𝑛 :

2𝑖 + 1 ≤ 𝑛 ⟹ 𝑖 ≤
𝑛

2

Size of the input 𝑂 log 𝑛 bits:

𝑛 is exponential in the size of
the input.

Algorithm Theory Fabian Kuhn 3

A Better Algorithm?

• How can we test primality efficiently?
– We need a little bit of basic number theory…

Square Roots of Unity: In ℤ𝑝
∗ , where 𝑝 is a prime, the only

solutions of the equation 𝑥2 ≡ 1 (mod 𝑝) are 𝑥 ≡ ±1 (mod 𝑝)

• If we find an 𝑥 ≢ ±1 (mod 𝑛) such that 𝑥2 ≡ 1 (mod 𝑛), we
can conclude that 𝑛 is not a prime.

ℤ𝑝
∗ = {1,… , 𝑝 − 1}, multiplication mod 𝑝

𝑥2 ≡ 1 mod 𝑝
𝑥2 − 1 ≡ 0 mod 𝑝

𝑥 + 1 ⋅ (𝑥 − 1) ≡ 0 mod 𝑝
𝒙 + 𝟏 ⋅ 𝒙 − 𝟏 = 𝒄 ⋅ 𝒑

For an integer 𝑐

𝒑 is a prime factor
of 𝒙 + 𝟏 or of 𝒙 − 𝟏:

𝑥 + 1 ≡ 0 mod 𝑝 or
𝑥 − 1 ≡ 0 mod 𝑝

Not true if 𝒑 is not prime:
𝑝 = 15, 𝑥 = 4
𝑥2 = 16 ≡ 1 mod 15

Algorithm Theory Fabian Kuhn 4

Algorithm Idea

Claim: Let 𝑝 > 2 be a prime number such that 𝑝 − 1 = 2𝑠𝑑 for an integer
𝑠 ≥ 1 and some odd integer 𝑑 ≥ 1. Then for all 𝑎 ∈ ℤ𝑝

∗ ,

𝑎𝑑 ≡ 1 mod 𝑝 𝐨𝐫 𝑎2
𝑟𝑑 ≡ −1 mod 𝑝 for some 0 ≤ 𝑟 < 𝑠.

Proof:

• Fermat’s Little Theorem:
For every prime 𝑝 and all 𝑎 ∈ ℤ𝑝

∗ : 𝑎𝑝−1 ≡ 1 (mod 𝑝)

• Consider 𝑥0, 𝑥1, … , 𝑥𝑠, where 𝑥𝑖 = 𝑎𝛿𝑖 for 𝛿𝑖 =
𝑝−1

2𝑖
= 2𝑠−𝑖 ⋅ 𝑑

• ∀𝑖 < 𝑠 ∶ 𝑥𝑖 = 𝑥𝑖+1
2 , thus 𝑥𝑖 ≡ 1 mod 𝑝 ⟹ 𝑥𝑖+1 ≡ −1, 1 mod 𝑝

• Fermat’s Little Theorem ⟹ 𝑥0 ≡ 1 mod 𝑝

• Thus: ∀𝑖 ≤ 𝑠 ∶ 𝑥𝑖 ≡ 1 mod 𝑝 or ∃𝑖 ≤ 𝑠 ∶ 𝑥𝑖 ≡ −1 mod 𝑝
– This directly implies the claim.

Recall that 𝑥2 ≡ 1 mod 𝑝 ⇔ 𝑥 ≡ −1, 1 mod 𝑝

𝛿1 =
𝑝 − 1

2
𝛿0 = 𝑝 − 1 𝛿2 =

𝑝 − 1

4
𝛿𝑠−1 =

𝑝 − 1

2𝑠−1
𝛿𝑠 =

𝑝 − 1

2𝑠
⋯

= 2𝑠 ⋅ 𝑑 = 2𝑠−1 ⋅ 𝑑 = 2𝑠−2 ⋅ 𝑑 = 2 ⋅ 𝑑 = 𝑑

Algorithm Theory Fabian Kuhn 5

Primality Test

We have: If 𝑛 is an odd prime and 𝑛 − 1 = 2𝑠𝑑 for an integer 𝑠 ≥ 1
and an odd integer 𝑑 ≥ 1. Then for all 𝑎 ∈ {1,… , 𝑛 − 1},

𝑎𝑑 ≡ 1 mod 𝑛 𝐨𝐫 𝑎2
𝑟𝑑 ≡ −1 mod 𝑛 for some 0 ≤ 𝑟 < 𝑠.

Idea: If we find an 𝑎 ∈ {1,… , 𝑛 − 1} such that

𝑎𝑑 ≢ 1 mod 𝑛 𝐚𝐧𝐝 𝑎2
𝑟𝑑 ≢ −1 mod 𝑛 for all 0 ≤ 𝑟 < 𝑠,

we can conclude that 𝑛 is not a prime.

• For every odd composite 𝑛 > 2, at least Τ3 4 of all
𝑎 ∈ {2,… , 𝑑 − 2} satisfy the above condition ¬ ∗ .

• How can we find such a witness 𝑎 efficiently?

(∗)

¬(∗)

Idea: pick 𝑎 at random

Algorithm Theory Fabian Kuhn 6

Miller-Rabin Primality Test

• Given a natural number 𝑛 ≥ 2, is 𝑛 a prime number?

Miller-Rabin Test:

1. if 𝑛 is even then return 𝑛 = 2

2. compute 𝑠, 𝑑 such that 𝑛 − 1 = 2𝑠𝑑;

3. choose 𝑎 ∈ {2,… , 𝑛 − 2} uniformly at random;

4. 𝑥 ≔ 𝑎𝑑 mod 𝑛;

5. if 𝑥 = 1 or 𝑥 = 𝑛 − 1 then return probably prime;

6. for 𝑟 ≔ 1 to 𝑠 − 1 do

7. 𝑥 ≔ 𝑥2 mod 𝑛;

8. if 𝑥 = 𝑛 − 1 then return probably prime;

9. return composite;

(∗) holds

Algorithm Theory Fabian Kuhn 7

Analysis

Theorem:

• If 𝒏 is prime, the Miller-Rabin test
always returns probably prime.

• If 𝒏 is composite, the Miller-Rabin test returns
composite with probability at least Τ𝟑 𝟒.

Proof:

• If 𝑛 is prime, the test works for all values of 𝑎

• If 𝑛 is composite, we need to pick a good witness 𝑎

Corollary: If the Miller-Rabin test is repeated 𝑘 times, it fails to
detect a composite number 𝑛 with probability at most 4−𝑘.

2,… , 𝑑 − 2 : all possible 𝑎

good 𝑎 : Τ3 4 of all possible 𝑎

Algorithm Theory Fabian Kuhn 8

Running Time

Cost of Modular Arithmetic:

• Representation of a number 𝑥 ∈ ℤ𝑛: 𝑂(log 𝑛) bits

• Cost of adding two numbers 𝑥 + 𝑦 mod 𝑛:

• Cost of multiplying two numbers 𝑥 ⋅ 𝑦 mod 𝑛:
– Done naively, this takes time 𝑂 log2 𝑛

– It’s like multiplying degree 𝑂(log 𝑛) polynomials
 use FFT to compute 𝑧 = 𝑥 ⋅ 𝑦

Time: 𝑂 log 𝑛

Time: 𝑂 log 𝑛 ⋅ log log 𝑛 ⋅ log log log 𝑛

Algorithm Theory Fabian Kuhn 9

Running Time

Cost of exponentiation 𝒙𝒅 𝐦𝐨𝐝 𝒏:

• Can be done using 𝑂(log 𝑑) multiplications

• Base-2 representation of 𝑑: 𝑑 = σ𝑖=0
⌊log2 𝑑⌋𝑑𝑖2

𝑖

• Fast exponentiation:
1. 𝑦 ≔ 1;

2. for 𝑖 ≔ ⌊log2 𝑑⌋ to 0 do

3. 𝑦 ≔ 𝑦2 mod 𝑛;

4. if 𝑑𝑖 = 1 then 𝑦 ≔ 𝑦 ⋅ 𝑥 mod 𝑛;

5. return 𝑦;

• Example: 𝑑 = 22 = 101102

𝑥22 = 12 ⋅ 𝑥 2 2
⋅ 𝑥

2

⋅ 𝑥

2

Algorithm Theory Fabian Kuhn 10

Running Time

Theorem: One iteration of the Miller-Rabin test can be implemented
with running time 𝑂 log2 𝑛 ⋅ log log 𝑛 ⋅ log log log 𝑛 .

1. if 𝑛 is even then return 𝑛 = 2

2. compute 𝑠, 𝑑 such that 𝑛 − 1 = 2𝑠𝑑;

3. choose 𝑎 ∈ {2,… , 𝑛 − 2} uniformly at random;

4. 𝑥 ≔ 𝑎𝑑 mod 𝑛;

5. if 𝑥 = 1 or 𝑥 = 𝑛 − 1 then return probably prime;

6. for 𝑟 ≔ 1 to 𝑠 − 1 do

7. 𝑥 ≔ 𝑥2 mod 𝑛;

8. if 𝑥 = 𝑛 − 1 then return probably prime;

9. return composite;

Time 𝑂 log 𝑛

𝑂 log 𝑑 = 𝑂 log 𝑛 multiplications

𝑠 = 𝑂 log 𝑛 iterations

1 multiplication per iteration

𝑂 log 𝑛 multiplications ⟹ time 𝑂 log2 𝑛 ⋅ log log 𝑛 ⋅ log log log 𝑛

Algorithm Theory Fabian Kuhn 11

Deterministic Primality Test

• If a conjecture called the generalized Riemann hypothesis (GRH)
is true, the Miller-Rabin test can be turned into a polynomial-
time, deterministic algorithm

 It is then sufficient to try all 𝑎 ∈ 1,… , 2 ln2 𝑛

• It has long not been proven whether a deterministic,
polynomial-time algorithm exists

• In 2002, Agrawal, Kayal, and Saxena gave an ෨𝑂 log12 𝑛 -time
deterministic algorithm

– Has been improved to ෨𝑂 log6 𝑛

• In practice, the randomized Miller-Rabin test is still the fastest
algorithm

hides factors polynomial in log log 𝑛

