
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
M. Fuchs, G. Schmid

Algorithms and Datastructures

Winter Term 2022
Sample Solution Exercise Sheet 2

Due: Wednesday, November 2nd, 2pm

Exercise 1: O-notation (9 Points)

Prove or disprove the following statements. Use the set definition of the O-notation (lecture slides
week 2, slides 11 and 12).

(a) 2n3 + 4n2 + 7
√
n ∈ O(n3) (1 Point)

(b) n · log3(n) ∈ ω(n · log5(n)) (2 Points)

(c) 2n ∈ o(n!) (2 Points)

(d) 2 log2
(
n2
)
∈ Ω((log2 n)2) (2 Points)

(e) max{f(n), g(n)} ∈ Θ(f(n) + g(n)) for non-negative functions f and g. (2 Points)

Sample Solution

(a) True. Choose n0 = 1 and c = 13. For all n ≥ n0 we have n3 ≥ n2 ≥
√
n and hence 2n3 + 4n2 +

7
√
n ≤ 13n3 = cn3.

(b) False. Consider some c > 1
log5(3)

. Then for all n we have n · log3(n) = n · log5(n)log5(3)
< c · n · log5(n).

(c) True. For n ≥ 2 we have

(n− 1)! = (n− 1) · (n− 2) · . . . · 2 ≥ 2n−2

and hence
4(n− 1)! ≥ 2n

Let c > 0. Choose n0 = max
{

2,
⌈
4
c

⌉}
. Then for all n ≥ n0 we have

2n ≤ 4(n− 1)! ≤ c · n · (n− 1)! = c · n!

(d) False. Let c > 0. We have

2 log(n2) ≥ c(log n)2

⇔ 4 log(n) ≥ c(log n)2

⇔ 4 ≥ c log n
⇔ 4

c ≥ log n

⇔ 16
1
c ≥ n

So for a given n0 ≥ 1 choose n = max{n0, 16
1
c } + 1. For this n we have n > n0 but 2 log(n2) <

c(log n)2.

(e) True. Choose n0 = 1, c1 = 1
2 and c2 = 1. For n ≥ n0 we have

c1 · (f(n) + g(n)) ≤ max{f(n), g(n)}
f,g≥0
≤ c2(f(n) + g(n))



Exercise 2: Sorting by asymptotic growth (6 Points)

Sort the following functions by their asymptotic growth. Write g <O f if g ∈ O(f) and f /∈ O(g).
Write g =O f if f ∈ O(g) and g ∈ O(f) (no proof needed).

√
n 2n n! log(n3)

3n n100 log(
√
n) (log n)2

log n 10100n (n + 1)! n log n

2(n
2) nn

√
log n (2n)2

Sample Solution

√
log n <O log(

√
n) =O log n =O log(n3) <O (log n)2 <O

√
n <O 10100n <O n log n

<O n100 <O 2n <O 3n <O (2n)2 <O n! <O (n + 1)! <O nn <O 2(n
2)

Exercise 3: Stable Sorting (5 Points)

A sorting algorithm is called stable if elements with the same key remain in the same order. E.g.,
assume you want to sort the following tuples with respect to their integer key:

[(3, ”blue”), (1, ”green”), (1, ”red”), (7, ”gray”), (4, ”yellow”), (3, ”orange”), (4, ”white”), (3, ”black”)]

A stable sorting algorithm must generate the following output:

[(1, ”green”), (1, ”red”), (3, ”blue”), (3, ”orange”), (3, ”black”), (4, ”yellow”), (4, ”white”), (7, ”gray”)]

A sorting algorithm is not stable (with respect to the sorting key) if it outputs, e.g., the following:

[(1, ”red”), (1, ”green”), (3, ”black”), (3, ”blue”), (3, ”orange”), (4, ”yellow”), (4, ”white”), (7, ”gray”)]

(a) Give an example that shows that QuickSort is not stable. (1 Point)

(b) Describe a method to make any comparison-based sorting algorithm stable, without changing the
asymptotic runtime. Explain. (4 Points)

Sample Solution

(a) Consider as input the array [x, y, z, w] with x.key = 1, y.key = z.key = 2 and w.key = 0 and
assume x is taken as pivot. In the first divide step, y and w are swapped (i.e., we first get [x,w, z, y]
and then the pivot will be swapped s.t. the array looks like [w, x, z, y]) and the array is divided
into [x,w] and [z, y]. Recursive sorting yields [x,w] and [z, y] and thus [w, x, z, y] will be returned.
So y and z have been swapped.

(b) Add the number i to the key of the i-th element in the array (i.e., set A[i].key = (A[i].key, i)).
Now run the given (non-stable) sorting algorithm according to the lexicographic ordering1 on this
new set of keys. That is, we sort according to the original keys and use the index in A as tie
breaker.

Changing the keys takes time O(n). Additionally, each comparison between two elements is
prolonged by an additional O(1) steps. As any sorting algorithm takes Ω(n), the asymptotic
runtime does not change.

1Let (A,<A) and (B,<B) be ordered sets. The lexicographic ordering <lex on A×B is defined by (a, b) <lex (a′, b′) :⇔
a <A a′ ∨ (a = a′ ∧ b <B b′)


