Algorithms and Datastructures Winter Term 2022 Sample Solution Exercise Sheet 13

Due: Wednesday, February 1st, 4pm

Exercise 1: (Binary) Heaps and Heapsort

(12 Bonus Points)
(a) Implement a binary heap using the array implementation from the lecture. The heap should support the following functions: create, insert (eines key-value pairs), get_min and delete_min. You may use the template heap.py.
Hint: To implement delete_min efficiently one overwrites the root with the last element of the heap and then deletes the last element. Afterwards one has to repair the min-heap property.
(b) Implement the heapsort algorithm by using your implementation from the previous task. ${ }^{1}$ Explain the $O(n \log n)$ runtime of heapsort.

Argue why there can't be a heap implementation where insert, get_min and delete_min have all constant runtime.
(3 Points)
(c) In this task we consider ternary heaps. They are similar to binary heaps with the difference that each parent node may have 3 children. We also have that the underlying tree is filled up with nodes from 'top to bottom' and 'left to right'.

Give the minimal and maximal number of nodes of a ternary heap of depth d.
(1 Point)
Assume we use an array implementation for ternary heaps ${ }^{2}$, starting with index 1 (not 0). Let i be the index of a node v that is neither the root nor a leaf. What are the indices of v 's parent and its three children?
(3 Points)

Sample Solution

(a) See heap.py
(b) Heaport inserts n elements into the heap. In a second loop, alternating get_min and delete_min empties the heap and retrieving the smallest element at any time. The runtimes of insert and delete_min are logarithmic in the number of elements while get_min is constant:

$$
\sum_{i=1}^{n} \underbrace{O(\log n)}_{\text {insert }}+\sum_{i=1}^{n}(\underbrace{O(1)}_{\text {get }}+\underbrace{O(\log n)}_{\text {delete }})=O(n \log n)
$$

Why these 3 operations can not be constant: Assume all of them would be constant, then heapsort would sort an array of n arbitrary numbers in time $O(n)$. This is a contradiction to the fact that any comparison-based sorting algorithm takes at least $\Omega(n \log n)$ time.

[^0](c) Min: Tee is complete up depth $d-1$ but contains just 1 node in depth d :
$$
1+\sum_{i=0}^{d-1} 3^{i}=1+\frac{3^{d}-1}{3-1}=\frac{3^{d}+1}{2}
$$

Max: Tee is complete up depth d :

$$
\sum_{i=0}^{d} 3^{i}=\frac{3^{d+1}-1}{3-1}=\frac{3^{d+1}-1}{2}
$$

Index left child: $3 \cdot i-1$
Index middle child: $3 \cdot i$
Index right child: $3 \cdot i+1$
Index parent: $\left\lfloor\frac{i+1}{3}\right\rfloor$

Exercise 2: Hashing

(a) Let $h(s, j):=h_{1}(s)-2 j \bmod m$ and $h_{1}(x):=x+2 \bmod m$. Insert the keys $51,13,21,30,23$, 72 (in the given order) into a hash table of size $m=7$ by using the hash function h and linear probing for collision resolution. (The following table should show the final state after inserting all keys.)
(1 Point)

0	1	2	3	4	5	6

(b) Assume we would like to insert the sequence of numbers from part a) in a table of size $m=7$ by using quadratic probing. Which of the following hash functions would be the better choice? Explain your answer.

- $h_{1}(x, i):=x+6 i+2 i^{2} \bmod m$
- $h_{2}(x, i):=x+i+4 i^{2} \bmod m$

Insert the keys by using the better hash function into the following table.
(2 Points)

0	1	2	3	4	5	6

(c) Let $h(s, j):=h_{1}(s)+j \cdot h_{2}(s) \bmod m$ with $h_{1}(x)=x \bmod m$ and $h_{2}(x)=1+(x \bmod (m-1))$. Insert the keys $28,59,47,13,39,69,12$ in a hash table of size $m=11$ by using double-hashing for collision resolution.
(2 Points)

0	1	2	3	4	5	6	7	8	9	10

(d) Given the hash functions $h_{1}(x):=x+2 \bmod m$ and $h_{2}(x):=3 x \bmod m$ with $m=7$, find three pairwise distinct keys $u, v, w \in \mathbb{N}$ such that $h_{1}(u)=h_{1}(v)=h_{1}(w) \neq h_{2}(u)=h_{2}(v)=h_{2}(w)$. Insert u and v into the following table by using Cuckoo Hashing.

0	1	2	3	4	5	6

If we also insert w, we obtain a cycle. To avoid this, we apply a rehash by increasing the table's size to $m^{\prime}=11$ and use two new hash functions h_{1}^{\prime} and h_{2}^{\prime}. Give two distinct functions h_{1}^{\prime} and h_{2}^{\prime} of the form $\left(a x \bmod m^{\prime}\right)$ with $a \not \equiv 0$ such that u, v and w can be inserted into the new table (i.e., that no cycle is created).
(3 Points)

Sample Solution

(a)

30	13	21	72	51	23	
0	1	2	3	4	5	6

(b) h_{2} ist not suitable, since there is no free array position for 23 :

$$
\begin{aligned}
& h_{2}(51,0)=2 \\
& h_{2}(13,0)=6 \\
& h_{2}(21,0)=0 \\
& h_{2}(30,6)=5 \\
& h_{2}(23,0)=2 \\
& h_{2}(23,1)=0 \\
& h_{2}(23,2)=6 \\
& h_{2}(23,3)=6 \\
& h_{2}(23,4)=0 \\
& h_{2}(23,5)=2 \\
& h_{2}(23,6)=5
\end{aligned}
$$

Table filled with h_{2} :

21	23	51	30		72	13
0	1	2	3	4	5	6

(c)

	69	13	47	59	39	28	12			
0	1	2	3	4	5	6	7	8	9	10

(d) We choose $u:=2, v:=9$ and $w:=16$. Thus, we have $h_{1}(u)=h_{1}(v)=h_{1}(w)=4 \neq 6=h_{2}(w)=$ $h_{2}(v)=h_{2}(u)$.

				v		u
0	1	2	3	4	5	6

As new functions we can choose for instance $h_{1}^{\prime}(x)=x \bmod 11$ and $h_{2}^{\prime}(x)=2 x \bmod 11$.

[^0]: ${ }^{1}$ If you did not solve the previous task, you may use heapq. In heapq, heappush equals the insert and heappop the delete-min operation from the lecture. heappush and heappop can be apllied on Python-lists (for more detail see here).
 ${ }^{2}$ Similar to the array implementation of binary heaps on slide 26 in lecture 9 .

