
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
G. Schmid

Algorithms and Datastructures

Winter Term 2023
Exercise Sheet 4

Due: Wednesday, November 22nd, 2pm

Exercise 1: Hashing with Open Addressing (10 Points)

We consider hash tables with open addressing and two different methods for collision resolution: linear
probing and double hashing. Let m be the size of the hash table where m is prime. Let h1(x) := 53 ·x
and h2(x) := 1 + (x mod (m−1)). We define the following hash functions for collision resolution
according to the lecture:

• linear probing: h`(x, i) := (h1(x) + i) mod m.

• double hashing: hd(x, i) := (h1(x) + i · h2(x)) mod m.

(a) Implement a hash table with operations insert and find using the mentioned strategies for
collision resolution1. You may use the template HashTable.py. (5 Points)

(b) Create a hash table of size m > 1000 (m prime) and measure the average time for inserting k keys
for k ∈ {bm·i

50 c | i = 1, . . . , 49} in four variations: Using linear probing / double hashing; inserting
k random keys2 / the set of keys {m · i | i = 1, . . . , k}. Create a plot showing the four different
average runtimes. Discuss your results. (5 Points)

Exercise 2: Application of Hashtables (10 Points)

Consider the following algorithm:

Algorithm 1 algorithm . Input: Array A of length n with integer entries

1: for i = 1 to n− 1 do
2: for j = 0 to i− 1 do
3: for k = 0 to n− 1 do
4: if |A[i]−A[j]| = A[k] then
5: return true
6: return false

(a) Describe what algorithm computes and analyse its asymptotical runtime. (3 Points)
Hint: The difference |A[i]−A[j]| may become arbitrarily large.

(b) Describe a different algorithm B for this problem (i.e., B(A) = algorithm(A) for each input A)
which uses hashing and takes time O(n2) (with proof). (3 Points)

Hint: You may assume that inserting and finding keys in a hash table needs O(1) if α = O(1) (α
is the load of the table).

(c) Describe another algorithm for this problem without using hashing which takes time O(n2 log n)
(with proof). (4 Points)

1You can assume that no more than m elements will be inserted to the hash table.
2Unique random values from {0, . . . , z} with z � m, e.g., with random.sample(range(z+1), k).

