Algorithm Theory
 Exercise Sheet 1

Due: Friday, 27th of October, 2023, 10:00 am

Exercise 1: Landau and Recursions

(8 Points)

(a) Is $(\log (\sqrt{n}))^{2} \in \Theta(\log n)$ true? Justify.
(2 Points)
Consider two real square matrices X and Y each of size $n \times n$. The goal is to find the matrix multiplication of X and Y i.e. $Z=X \times Y$, which is also of size $n \times n$.
(b) Use the principle of divide and conquer to design an algorithm that finds Z in time $O\left(n^{3}\right)$ and analyze its running time.
Hint: try dividing the matrices into submatrices of size $\frac{n}{2} \times \frac{n}{2}$.
(3 Points)
(c) Let $X=\left(\begin{array}{ll}A & L \\ G & O\end{array}\right)$ and $Y=\left(\begin{array}{ll}T & H \\ E & O^{\prime}\end{array}\right)$, where $A, L, G, O, T, H, E, O^{\prime}$ are matrices of size $\frac{n}{2} \times \frac{n}{2}$.

Let $Z=\left(\begin{array}{cc}?+P_{4}-P_{2}+? & ?+? \\ ?+? & ?+P_{5}-P_{3}-?\end{array}\right)$
Fill in Z using the following $\frac{n}{2} \times \frac{n}{2}$ matrices:
$P_{1}=A\left(H-O^{\prime}\right)$,
$P_{2}=(A+L) O^{\prime}$,
$P_{3}=(G+O) T$,
$P_{4}=O(E-T)$,
$P_{5}=(A+O)\left(T+O^{\prime}\right)$
$P_{6}=(L-O)\left(E+O^{\prime}\right)$,
$P_{7}=(A-G)(T+H)$
then show that time complexity for finding Z can get significantly better than in part (b).
(3 Points)

Exercise 2: K-th Smallest Element

(5 Points)
Consider two arrays A and B of unique integers such that they are sorted in an increasing order and of size m and n, respectively. Let $k \leq m, n$, give an algorithm that finds the k-th smallest integer in the sorted union of the two arrays in time $O(\log k)$. Argue correctness and analyze its running time. Remark: for simplicity, one may consider k to be a power of two.

Exercise 3: Triangle with Shortest Perimeter

Let $P=\left\{\left(x_{i}, y_{i}\right) \in \mathbb{R}^{2} \mid i=1, \ldots, n\right\}$ be a set of points in \mathbb{R}^{2}. Given three distinct points $a, b, c \in P$ they span a triangle with perimeter

$$
\operatorname{peri}(a, b, c)=d(a, b)+d(b, c)+d(a, c)
$$

where $d(\cdot, \cdot)$ determines the euclidean distance of two points.
(a) Assume e to be the shortest perimeter of a triangle formed by 3 points from P, how many triangles (formed by 3 points from P) can there be in a rectangle of size $e / 5 \times e / 4$?
(b) Describe a $\mathcal{O}(n \cdot \log (n))$ algorithm which finds the smallest triangle perimeter in P. Argue shortly the correctness of your algorithm and its running time.
(5 Points)

