

Algorithm Theory Exercise Sheet 1

Due: Friday, 27th of October, 2023, 10:00 am

Exercise 1: Landau and Recursions

(a) Is
$$(\log(\sqrt{n}))^2 \in \Theta(\log n)$$
 true? Justify.

Consider two real square matrices X and Y each of size $n \times n$. The goal is to find the matrix multiplication of X and Y i.e. $Z = X \times Y$, which is also of size $n \times n$.

(b) Use the principle of divide and conquer to design an algorithm that finds Z in time $O(n^3)$ and analyze its running time.

(3 Points) *Hint: try dividing the matrices into submatrices of size* $\frac{n}{2} \times \frac{n}{2}$.

(c) Let $X = \begin{pmatrix} A & L \\ G & O \end{pmatrix}$ and $Y = \begin{pmatrix} T & H \\ E & O' \end{pmatrix}$, where A, L, G, O, T, H, E, O' are matrices of size $\frac{n}{2} \times \frac{n}{2}$. Let $Z = \begin{pmatrix} ? + P_4 - P_2 + ? & ?+? \\ ?+? & ?+P_5 - P_3 - ? \end{pmatrix}$ Fill in Z using the following $\frac{n}{2} \times \frac{n}{2}$ matrices: $P_1 = A(H - O'),$ $P_2 = (A+L)O',$ $P_3 = (G+O)T,$ $P_4 = O(E - T),$ $P_5 = (A+O)(T+O')$ $P_6 = (L - O)(E + O'),$ $P_7 = (A - G)(T + H)$

then show that time complexity for finding Z can get significantly better than in part (b).

(3 Points)

Exercise 2: K-th Smallest Element

Consider two arrays A and B of unique integers such that they are sorted in an increasing order and of size m and n, respectively. Let $k \leq m, n$, give an algorithm that finds the k-th smallest integer in the sorted union of the two arrays in time $O(\log k)$. Argue correctness and analyze its running time. Remark: for simplicity, one may consider k to be a power of two.

(7 Points) Exercise 3: Triangle with Shortest Perimeter

Let $P = \{(x_i, y_i) \in \mathbb{R}^2 \mid i = 1, ..., n\}$ be a set of points in \mathbb{R}^2 . Given three distinct points $a, b, c \in P$ they span a triangle with *perimeter*

$$peri(a, b, c) = d(a, b) + d(b, c) + d(a, c),$$

where $d(\cdot, \cdot)$ determines the euclidean distance of two points.

(5 Points)

(2 Points)

(8 Points)

- (a) Assume e to be the shortest perimeter of a triangle formed by 3 points from P, how many triangles (formed by 3 points from P) can there be in a rectangle of size $e/5 \times e/4$? (2 Points)
- (b) Describe a $\mathcal{O}(n \cdot \log(n))$ algorithm which finds the smallest triangle perimeter in *P*. Argue shortly the correctness of your algorithm and its running time. (5 Points)