
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
S. Faour, M. Fuchs, A. Malyusz

Algorithm Theory
Exercise Sheet 5

Due: Friday, 24th of November 2023, 10:00 am

Exercise 1: Amortized Analysis (4+4+4 Points)

Your plan to implement a Stack with the classical operations push, pop and peek. As underlying
data structure you use a dynamic array that will grow its size whenever ’many’ elements are stored
and on the other hand also shrinks its size when only a view elements remain in the array. In the
following let ni be the number of elements stored in the array and let si be the size of the array after
the i-th operation.

• Before you push a new element x to the array, you check if ni−1 + 1 < 80% · si−1. If this is the
case then you simply add x. We say for simplicity, that this can be done in 1 time unit. If on
the other hand ni−1 + 1 ≥ 80% · si−1, you set up a new (empty) array of size si := 2si−1 and
copy all elements (and x) into the new one. We assume this can be done in si−1 time units1.

• To pop an element from the array, you first check if ni−1 − 1 > 20% · si−1. If this is the case
then pop x within 1 time unit. If the table size is small, say si−1 ≤ 8, you also just pop x. But,
if ni−1 − 1 ≤ 20% · si−1 and si−1 > 8, create a new (empty) array of size si := si−1/2 and copy
all values except x into this new array. By assumption, this step takes si time units.

• The peek operation returns the last inserted element in 1 time unit. Note that state of the
array does not change, i.e., ni−1 = ni and si−1 = si.

Initially, the array is of size s0 = 8. Assume that this initial step can also be done in 1 time unit.
Note that by this initial size and the definition of the pop method we have si ≥ 8 for all i ≥ 0. Also
note that after every operation that resized the array at least one element can be pushed or popped
until a further resize is required.

a) Let i be a push operation that resized the array. Show that the following holds.

0.4 · si ≤ ni < 0.55 · si
Further, show that if i is a pop operation that resized the array, the following holds.

0.25 · si < ni ≤ 0.4 · si

b) Use the Accounting Method from the lecture to show that the amortized running times of
push, pop and peek are O(1), i.e., state by how much you additionally charge these three operation
and show that the costs you spare on ’the bank’ are enough to pay for the costly operations.
Hint: Use the previous subtask, even if you didn’t manage to show them.

c) Show the same statement as in the previous task, but use the Potential Function Method this
time, i.e., find a potential function φ(ni, si) and show that this function is sufficient to achieve
constant amortized time for the supported operations.
Hint: There is not just one but infinitely many potential functions that work here. However, you
may want to use a function of the form c0 · |ni − c1 · si| for some properly chosen constants c0 > 0
and c1 > 0.
1For a simpler calculation we use normalized time units, such that all the operations that would take O(1) time will

take at most 1 time unit and operations that would take O(si−1) time will take at most si time units.

Exercise 2: Union-Find (2+2+4 Points)

In the lecture we have seen two heuristics (i.e., the union-by-size and the union-by-rank heuristic)
to implement the union-find data structure. In this exercise we will focus on the union-by-rank
heuristic only! Note that the rank is basically the height of the underlying tree. This is not true if
we use path compression as the height of the tree might change; but the rank is still an upper bound
on the actual height of the tree. To solve the following tasks consider the union-find data structure
implemented by disjoint forest using union-by-rank heuristic and path compression.

(a) Give the pseudocode for union(x, y).
Remark: Use x.parent to access the parent of some node x and use x.rank to get its rank. The
find(x) operation is implemented as stated in the lecture using path compression.

(b) Show that the height of each tree (in the disjoint forest) is at most O(log n) where n is the
number of nodes.

(c) Show that the above’s bound is tight, i.e., give an example execution (of makeSet’s and union’s)
that creates a tree of height Θ(log n). Proof your statement!

