
Chapter 10
Parallel Algorithms

Algorithm Theory

Fabian Kuhn



Algorithm Theory Fabian Kuhn 2

Sequential Algorithms
Classical Algorithm Design:
• One machine/CPU/process/… doing a computation

RAM (Random Access Machine):
• Basic standard model
• Unit cost basic operations
• Unit cost access to all memory cells

Sequential Algorithm / Program:
• Sequence of operations

(executed one after the other)



Algorithm Theory Fabian Kuhn 3

Parallel and Distributed Algorithms
Today’s computers/systems are not sequential:
• Even cell phones have several cores
• Future systems will be highly parallel on many levels
• This also requires appropriate algorithmic techniques

Goals, Scenarios, Challenges:
• Exploit parallelism to speed up computations
• Shared resources such as memory, bandwidth, …
• Increase reliability by adding redundancy
• Solve tasks in inherently decentralized environments
• …



Algorithm Theory Fabian Kuhn 4

Parallel and Distributed Systems
• Many different forms

• Processors/computers/machines/… communicate and share 
data through
– Shared memory or message passing

• Computation and communication can be
– Synchronous or asynchronous

• Many possible topologies for message passing
• Depending on system, various types of faults



Algorithm Theory Fabian Kuhn 5

Challenges
Algorithmic and theoretical challenges:
• How to parallelize computations
• Scheduling (which machine does what)
• Load balancing
• Fault tolerance
• Coordination / consistency
• Decentralized state
• Asynchrony
• Bounded bandwidth / properties of comm. channels
• …



Algorithm Theory Fabian Kuhn 6

Models

• A large variety of models, e.g.:

• PRAM (Parallel Random Access Machine)
– Classical model for parallel computations

• Shared Memory
– Classical model to study coordination / agreement problems, 

distributed data structures, …

• Message Passing (fully connected topology)
– Closely related to shared memory models

• Message Passing in Networks
– Decentralized computations, large parallel machines, comes in various 

flavors…

• Computations in large clusters of powerful individual 
machines: Massively Parallel Computations (MPC)



Algorithm Theory Fabian Kuhn 7

PRAM
• Parallel version of RAM model
• ! processors, shared random access memory

• Basic operations / access to shared memory cost 1
• Processor operations are synchronized
• Focus on parallelizing computation rather than cost of 

communication, locality, faults, asynchrony, …



Algorithm Theory Fabian Kuhn 8

Other Parallel Models
• Message passing: Fully connected network, local memory and 

information exchange using messages

• Dynamic Multithreaded Algorithms: Simple parallel 
programming paradigm
– E.g., used in Cormen, Leiserson, Rivest, Stein (CLRS)



Algorithm Theory Fabian Kuhn 9

Parallel Computations

Sequential Computation:
• Sequence of operations

Parallel Computation:
• Directed Acyclic Graph (DAG)



Algorithm Theory Fabian Kuhn 10

Parallel Computations
!": time to perform comp. with # procs

• $%: work (total # operations)
– Time when doing the

computation sequentially

• $&: critical path / span
– Time when parallelizing as

much as possible

• Lower Bounds:

!" ≥
!(
" , !" ≥ !&

!( = ((

!& = +



Algorithm Theory Fabian Kuhn 11

Parallel Computations
!": time to perform comp. with # procs

• Lower Bounds:

$% ≥
$'
# , $% ≥ $)

• Parallelism: 
*+
*,

– maximum possible speed-up

• Linear Speed-up:
$%
$'
= Θ(#)

!1 = 11

!) = 2



Algorithm Theory Fabian Kuhn 12

Scheduling
• How to assign operations to processors?

• Generally an online problem
– When scheduling some jobs/operations, we do not know how the 

computation evolves over time

Greedy Scheduling: 
• Order jobs/operations as they would be scheduled optimally 

with ∞ processors (topological sort of DAG)
– Easy to determine: With ∞ processors, one always schedules all 

jobs/ops that can be scheduled

• Always schedule as many jobs/ops as possible
• Schedule jobs/ops in the same order as with ∞ processors

– i.e., jobs that become available earlier have priority



Algorithm Theory Fabian Kuhn 13

Brent’s Theorem
Brent’s Theorem: On ! processors, a parallel computation can be 
performed in time

"# ≤
"% − "'

# + "'.
Proof:
• Greedy scheduling achieves this…
• #operations scheduled with ∞ processors in round +: ,-

Round %: ,% ops

Round .: ,. ops

Round -: ,- ops

Time with # processors: 
/0
! ≤ /0

! + ! − 1!
/2
! ≤ /2

! + ! − 1!

/3
! ≤ /3

! +
! − 1
!



Algorithm Theory Fabian Kuhn 14

Brent’s Theorem
Brent’s Theorem: On ! processors, a parallel computation can be 
performed in time

"# ≤
"% − "'

# + "'.
Proof:
• Greedy scheduling achieves this…
• #operations scheduled with ∞ processors in round +: ,-
• Time ./ to schedule the 0/ ops of round + with ! processors:

• Overall time with ! processors:

./ =
0/
! ≤ 0/

! +
! − 1
!

34(6) ≤8
/9:

;<
./ ≤8

/9:

;< 0/
! +

! − 1
! = 1

! ⋅8/9:

;<
0/ + 3' ⋅

! − 1
! = 3: − 3'

! + 3'



Algorithm Theory Fabian Kuhn 15

Brent’s Theorem
Brent’s Theorem: On ! processors, a parallel computation can be 
performed in time

"# ≤
"% − "'

# + "'.

Corollary: Greedy is a 2-approximation algorithm for scheduling.

Corollary: As long as the number of processors ! = O ⁄./ .' , it is 
possible to achieve a linear speed-up.

Opt. complexity with ! processors : .0∗

.0∗ ≥
./
!

.0∗ ≥ .'
.0(4) ≤

./
! + .' ≤ 2 ⋅ .0∗



Algorithm Theory Fabian Kuhn 16

PRAM
Back to the PRAM:
• Shared random access memory, synchronous computation steps
• The PRAM model comes in variants…

EREW (exclusive read, exclusive write):
• Concurrent memory access by multiple processors is not allowed
• If two or more processors try to read from or write to the same 

memory cell concurrently, the behavior is not specified

CREW (concurrent read, exclusive write):
• Reading the same memory cell concurrently is OK
• Two concurrent writes to the same cell lead to unspecified 

behavior
• This is the first variant that was considered (already in the 70s)



Algorithm Theory Fabian Kuhn 17

PRAM
The PRAM model comes in variants…

CRCW (concurrent read, concurrent write):
• Concurrent reads and writes are both OK
• Behavior of concurrent writes has to specified

– Weak CRCW: concurrent write only OK if all processors write 0
– Common-mode CRCW: all processors need to write the same value
– Arbitrary-winner CRCW: adversary picks one of the values
– Priority CRCW: value of processor with highest ID is written
– Strong CRCW: largest (or smallest) value is written

• The given models are ordered in strength: 

weak ≤ common-mode ≤ arbitrary-winner ≤ priority ≤ strong



Algorithm Theory Fabian Kuhn 18

Some Relations Between PRAM Models
Theorem: A parallel computation that can be performed in time !, using "
proc. on a strong CRCW machine, can also be performed in time #(! log ")
using " processors on an EREW machine.
• Each (parallel) CRCW step can be simulated by #(log ") EREW
• For each register, add # " additional registered, logically connected to a 

binary tree
• Reading the register: mark from leaves to root, then copy value from register 

on marked paths



Algorithm Theory Fabian Kuhn 19

Some Relations Between PRAM Models

Theorem: A parallel computation that can be performed in time !, using "
proc. on a strong CRCW machine, can also be performed in time #(! log ")
using " processors on an EREW machine.
• Each (parallel) CRCW step can be simulated by #(log ") EREW

• For each register, add # " additional registered, logically connected to a 
binary tree

• Writing the register: start at leaves and propagate the winning value towards 
the root



Algorithm Theory Fabian Kuhn 20

Some Relations Between PRAM Models

Theorem: A parallel computation that can be performed in time !, 
using " proc. on a strong CRCW machine, can also be performed in 
time #(! log ") using " processors on an EREW machine.

• Each (parallel) step on the CRCW machine can be simulated by 
#(log ") steps on an EREW machine

Theorem: A parallel computation that can be performed in time !, 
using " probabilistic processors on a strong CRCW machine, can also 
be performed in expected time #(! log ") using #( ⁄" log ")
processors on an arbitrary-winner CRCW machine.

• The same simulation turns out more efficient in this case



Algorithm Theory Fabian Kuhn 21

Some Relations Between PRAM Models
Theorem: A computation that can be performed in time !, using "
processors on a strong CRCW machine, can also be performed in time 
#(!) using # "& processors on a weak CRCW machine
Proof:
• Strong: largest value wins, weak: only concurrently writing 0 is OK

• Processes:
– Both machines use processes 1,… , "
– Weak machine: additional procs +,- for every pair ., / , 1 ≤ . < / ≤ "

• Additional memory cells of weak CRCW machine:

• If process . wants to write value 2 to memory cell 3:

set 45 ≔ 7, 85 ≔ 9, :5 ≔ ;

∀. ∈ 1,… , " ∶ flag ?,, value @,, address A, (all initialized to 0)



Algorithm Theory Fabian Kuhn 22

Some Relations Between PRAM Models
Theorem: A computation that can be performed in time !, using "
processors on a strong CRCW machine, can also be performed in time 
#(!) using # "& processors on a weak CRCW machine
Proof:
• Strong: largest value wins, weak: only concurrently writing 0 is OK
• If process ( wants to write value ) to memory cell *:

set +, ≔ ., 0, ≔ 1, 2, ≔ 3
∀(, 5 ∶ 789 reads cells :8, :9, ;8, ;9, <8, <9 (concurrent reads are OK)

if :8 = :9 = 1 ∧ <8 = <9 then (( and 5 write to same addr.)

if ;8 ≥ ;9 then :9 ≔ 0 (set flag to 0 if value loses)
else :8 ≔ 0 (concurrent writes of 0 OK)



Algorithm Theory Fabian Kuhn 23

Computing the Maximum
Given: ! values
Goal: find the maximum value

Observation: The maximum can be computed in parallel by using a 
binary tree (even on an EREW PRAM).

"# "$"% "& "' "( ") "*

Work +, = . !
Depth +/ = . log !

Time +3 = . 4
3 + log !

Linear speed-up (+3 = . +, ∕ 7 ) as long as 7 = . ⁄! log !



Algorithm Theory Fabian Kuhn 24

Computing the Maximum

Observation: On a strong CRCW machine, the maximum of a !
values can be computed in "(1) time using ! processors

• Each value is concurrently written to the same memory cell

Lemma: On a weak CRCW machine, the maximum of ! integers
between 1 and ! can be computed in time " 1 using " ! proc.

Proof:
• We have ! memory cells &',… , & * for the possible values

• Initialize all &+ ≔ 1
• For the ! values -', … , -*, processor . sets &/0 ≔ 0

– Since only zeroes are written, concurrent writes are OK

• Now, &+ = 0 iff value 3 occurs at least once

• Strong CRCW machine: max. value in time "(1) w. " ! proc.

• Weak CRCW machine: time "(1) using " ! proc. (prev. lemma)



Algorithm Theory Fabian Kuhn 25

Computing the Maximum

Theorem: If each value can be represented using ! log % bits, the 

maximum of % (integer) values can be computed in time !(1) using 

!(%) processors on a weak CRCW machine.

Proof:

• First look at 
)*+, -
. highest order bits

• The maximum value also has the maximum among those bits

• There are only % possibilities for these bits

• max. of 
)*+, -
. highest order bits can be computed in ! 1 time

• For those with largest 
)*+, -
. highest order bits, continue with 

next block of 
)*+, -
. bits, …



Algorithm Theory Fabian Kuhn 26

Prefix Sums
• The following works for any associative binary operator ⨁:

associativity: "⨁# ⨁$ = "⨁ #⨁$

All-Prefix-Sums: Given a sequence of & values "',… , "*, the all-
prefix-sums operation w.r.t. ⨁ returns the sequence of prefix sums:

+', +,, … , +* = "', "'⨁",, "'⨁",⨁"-,… , "'⨁⋯⨁"*
• Can be computed efficiently in parallel and turns out to be an 

important building block for designing parallel algorithms

Example: Operator: +, input: "',… , "0 = 3, 1, 7, 0, 4, 1, 6, 3

+', … , +0 =



Algorithm Theory Fabian Kuhn 27

Computing the Sum
• Let’s first look at !" = $%⨁$'⨁⋯⨁$"
• Parallelize using a binary tree:

⨁

⨁ ⨁

⨁ ⨁ ⨁ ⨁

)* )+), )- ). )/ )0 )1

Work 2% = 3 4
Depth 25 = 3 log 4

Time 29 = 3 "
9 + log 4(; procs)

Linear speed-up (29 = 3 2% ∕ ; ) as long as ; = 3 ⁄4 log 4



Algorithm Theory Fabian Kuhn 28

Computing the Sum

Lemma: The sum !" = $%⨁$'⨁⋯⨁$" can be computed in 
time )(log .) on an EREW PRAM. The total number of 
operations (total work) is )(.).
Proof:
• Use a binary tree of height )(log .)
• Tree has )(.) nodes (each computes one sum of two values)

Corollary: The sum !" can be computed in time ) log . using 
) ⁄. log . processors on an EREW PRAM.

Proof:
• Follows from Brent’s theorem (1% = )(.), 12 = )(log .))



Algorithm Theory Fabian Kuhn 29

Getting The Prefix Sums

• Instead of computing the sequence !", !$, … , !& let’s compute 
'", … , '& = 0, !", !$, … , !&*" (0: neutral element w.r.t. ⨁)

'", … , '& = 0, ,", ,"⨁,$,… , ,"⨁⋯⨁,&*"
• Together with !&, this gives all prefix sums

• Prefix sum '. = !.*" = ,"⨁⋯⨁,.*":

⨁

⨁ ⨁

⨁ ⨁ ⨁ ⨁

⨁ ⨁ ⨁ ⨁ ⨁ ⨁ ⨁ ⨁

/0 /1/2 /3 /4 /5 /6 /7 /8 /29 /22 /20 /21 /23 /24 /25
:23
(<21)



Algorithm Theory Fabian Kuhn 30

Getting The Prefix Sums
Claim: The prefix sum !" = $%⨁⋯⨁$"(% is the sum of all the 
leaves in the left sub-tree of ancestor ) of the leaf * containing $"
such that * is in the right sub-tree of ).

⨁

⨁ ⨁

⨁ ⨁ ⨁ ⨁

⨁ ⨁ ⨁ ⨁ ⨁ ⨁ ⨁ ⨁

+, +-+. +/ +0 +1 +2 +3 +4 +.5 +.. +., +.- +./ +.0 +.1



Algorithm Theory Fabian Kuhn 31

Computing The Prefix Sums
For each node ! of the binary tree, define "(!) as follows:
• % & is the sum of the values '( at the leaves in all the left sub-

trees of ancestors ) of & such that & is in the right sub-tree of ).

For a leaf node & holding value '(: " ! = "+ = ,+-.
For the root node: " /001 = 2
For all other nodes &:

& is the left child of ):

% & = %())
3

!

& is the right child of ):
() has left child 4)

% & = % ) + 6

(6: sum of values in
sub-tree of 4)

3

7 !

8



Algorithm Theory Fabian Kuhn 32

Computing The Prefix Sums

• leaf node ! holding value "#: $ % = $' = (')*
• root node: $ +,,- = .
• Node ! is the left child of /: 0 ! = 0(/)
• Node ! is the right child of /: 0 ! = 0 / + 4

– Where: 4 = sum of values in left sub-tree of /

Algorithm to compute values $(%):
1. Compute sum of values in each sub-tree (bottom-up)

– Can be done in parallel time 5 log 9 with 5(9) total work

2. Compute values 0(!) top-down from root to leaves:
– To compute the value 0(!), only 0(/) of the parent / and the sum of the 

left sibling (if ! is a right child) are needed

– Can be done in parallel time 5 log 9 with 5 9 total work



Algorithm Theory Fabian Kuhn 33

Example
1. Compute sums of all sub-trees

– Bottom-up (level-wise in parallel, starting at the leaves)

2. Compute values !(#)
– Top-down (starting at the root)

% &' −) * ' + & % ) ) ' , - . +

)) −) / /+ , / /

)& )) )' )%

+) ')

-+
&

& +)

&

&

& ' ))

))

))

)&

)&

)& )*

)/

)/ +)

+)

+)

+) +/ '&

'&

')

',

',

', '% ,'

,'

-&



Algorithm Theory Fabian Kuhn 34

Computing Prefix Sums
Theorem: Given a sequence !",… , !% of & values, all prefix sums 
'( = !"⨁⋯⨁!( (for 1 ≤ . ≤ &) can be computed in time /(log &)
using / ⁄& log & processors on an EREW PRAM.

Proof:
• Computing the sums of all sub-trees can be done in parallel in 

time / log & using / & total operations.
• The same is true for the top-down step to compute the 6(7)
• The theorem then follows from Brent’s theorem:

8" = / & , 89 = / log & ⟹ 8; < 89 +
8"
>

Remark: This can be adapted to other parallel models and to 
different ways of storing the value (e.g., array or list)



Algorithm Theory Fabian Kuhn 35

Parallel Quicksort
• Key challenge: parallelize partition

• How can we do this in parallel?
• For now, let’s just care about the values ≤ pivot
• What are their new positions

' () (* * (+ ,( - ( ,' (. (( ) ,/ (/ ,0 , + (- ,- (0

pivot

' () * - ( (( ) (/ , + (- (0 (* (+ ,( ,' (. ,/ ,0 ,-

partition



Algorithm Theory Fabian Kuhn 36

Using Prefix Sums
• Goal: Determine positions of values ≤ pivot after partition

' () (* * (+ ,( - ( ,' (. (( ) ,/ (/ ,0 , + (- ,- (0

pivot

( ( / ( / / ( ( / / ( ( / ( / ( ( ( / (

( , , - - - ) ' ' ' 0 . . * * + (/ (( (( (,

' () * - ( (( ) (/ , + (- (0 (* (+ ,( ,' (. ,/ ,0 ,-

prefix sums

partition



Algorithm Theory Fabian Kuhn 37

Partition Using Prefix Sums
• The positions of the entries > pivot can be determined in the 

same way

• Prefix sums: '( = * + , '- = *(log +)

• Remaining computations: '( = * + , '- = *(1)

• Overall: '( = * + , '- = *(log +)

Lemma: The partitioning of quicksort can be carried out in 
parallel in time * log + using * 3

456 3 processors.

Proof:

• By Brent’s theorem: '7 ≤ 9:
7 + '-



Algorithm Theory Fabian Kuhn 38

Applying to Quicksort
Theorem: On an EREW PRAM, using ! processors, randomized 
quicksort can be executed in time "# (in expectation and with 
high probability), where

"# = % & log &
! + log+ & .

Proof:
• Work "- = % & log &
• Depth/Span ". = % log+ &

Remark:
• We get optimal (linear) speed-up w.r.t. to the sequential 

algorithm for all ! = % ⁄& log & .



Algorithm Theory Fabian Kuhn 39

Other Applications of Prefix Sums
• Prefix sums are a very powerful primitive to design parallel 

algorithms.
– Particularly also by using other operators than “+”

Example Applications:
• Lexical comparison of strings
• Add multi-precision numbers
• Evaluate polynomials
• Solve recurrences
• Radix sort / quick sort
• Search for regular expressions
• Implement some tree operations
• …


